Page 344 - IJB-9-5
P. 344
International Journal of Bioprinting Review of 4D-printed smart medical implants
82. Tang ZH, Gao ZW, Jia SH, et al., 2017, Graphene-based printed shape memory PLA using FDM. J Manuf Process, 84:
polymer bilayers with superior light-driven properties 1507–1518.
for remote construction of 3D structures. Adv Sci, 4(5): https://doi.org/10.1016/j.jmapro.2022.11.007
1600437.
94. Zhao W, Li N, Liu LW, et al., 2022, Origami derived self-
https://doi.org/10.1002/advs.201600437 assembly stents fabricated via 4D printing. Compos Struct,
83. Lee AY, Zhou A, An J, et al., 2020, Contactless reversible 293: 115669.
4D-printing for 3D-to-3D shape morphing. Virtual Phys https://doi.org/10.1016/j.compstruct.2022.115669
Prototyp, 15(4): 481–495.
95. Tao R, Ji LT, Li Y, et al., 2020, 4D printed origami
https://doi.org/10.1080/17452759.2020.1822189 metamaterials with tunable compression twist behavior and
84. Deng H, Zhang C, Sattari K, et al., 2021, 4D printing elastic stress-strain curves. Compos Part B Eng, 201: 108344.
composites for strain-tailored multistable shape morphing. https://doi.org/10.1016/j.compositesb.2020.108344
ACS Appl Mater Interfaces, 13(11): 12719–12725.
96. Zhang YJ, Wang LC, Song WL, et al., 2020, Hexagon-twist
https://doi.org/10.1021/acsami.0c17618 frequency reconfigurable antennas via multi-material
85. Qu G, Huang J, Li Z, et al., 2022, 4D-printed bilayer hydrogel printed thermo-responsive origami structures. Front Mater,
with adjustable bending degree for enteroatmospheric 7: 600863.
fistula closure. Mater Today Bio, 16: 100363. https://doi.org/10.3389/fmats.2020.600863
https://doi.org/10.1016/j.mtbio.2022.100363 97. Xin XZ, Liu LW, Liu YJ, et al., 2020, Origami-inspired self-
86. Hagaman DE, Leist S, Zhou J, et al., 2018, Photoactivated deployment 4D printed honeycomb sandwich structure
polymeric bilayer actuators fabricated via 3D printing. ACS with large shape transformation. Smart Mater Struct, 29(6):
Appl Mater Interfaces, 10(32): 27308–27315. 065015.
https://doi.org/10.1021/acsami.8b08503 https://doi.org/10.1088/1361-665X/ab85a4
87. Liu Y, Lei Y, Hua L, et al., 2021, Biomimetic self-deformation 98. Yamamura S, Iwase E, 2021, Hybrid hinge structure with
of polymer interpenetrating network with stretch-induced elastic hinge on self-folding of 4D printing using a fused
anisotropicity. Chem Mater, 33(21): 8351–8359. deposition modeling 3D printer. Mater Des, 203: 109605.
https://doi.org/10.1021/acs.chemmater.1c02639 https://doi.org/10.1016/j.matdes.2021.109605
88. Athanasopoulos N, Siakavellas NJ, 2018, Bioinspired 99. Van Manen T, Janbaz S, Jansen KMB, et al., 2021, 4D printing
temperature-responsive multilayer films and their of reconfigurable metamaterials and devices. Commun
performance under thermal fatigue. Biomimetics, 3(3): 20. Mater, 2(1): 56.
https://doi.org/10.3390/biomimetics3030020 https://doi.org/10.1038/s43246-021-00165-8
89. Ding A, Jeon O, Tang R, et al., 2021, Cell-laden multiple- 100. Ge Q, Dunn CK, Qi HJ, et al., 2014, Active origami by 4D
step and reversible 4D hydrogel actuators to mimic dynamic printing. Smart Mater Struct, 23(9): 094007.
tissue morphogenesis. Adv Sci, 8(9): 2004616.
https://doi.org/10.1088/0964-1726/23/9/094007
https://doi.org/10.1002/advs.202004616
101. Yin JC, Fan WX, Xu ZH, et al., 2022, Precisely defining
90. Ding AX, Jeon O, Cleveland D, et al., 2022, Jammed micro- local gradients of stimuli-responsive hydrogels for complex
flake hydrogel for four-dimensional living cell bioprinting. 2D-to-4D shape evolutions. Small, 18(2): 2104440.
Adv Mater, 34(15): 2109394.
https://doi.org/10.1002/smll.202104440
https://doi.org/10.1002/adma.202109394
102. Liu G, Zhao Y, Wu G, et al., 2018, Origami and 4D printing of
91. Ding AX, Lee SJ, Ayyagari S, et al., 4D biofabrication via
instantly generated graded hydrogel scaffolds. Bioact Mater, elastomer-derived ceramic structures. Sci Adv, 4(8): eaat0641.
7: 324–332. https://doi.org/10.1126/sciadv.aat0641
https://doi.org/10.1016/j.bioactmat.2021.05.021 103. Langford T, Mohammed A, Essa K, et al., 2021, 4D printing
92. Ren L, Li B, He Y, et al., 2020, Programming shape-morphing of origami structures for minimally invasive surgeries using
behavior of liquid crystal elastomers via parameter-encoded functional scaffold. Appl Sci Basel, 11(1): 332.
4D printing. ACS Appl Mater Interfaces, 12(13): 15562–15572. https://doi.org/10.3390/app11010332
https://doi.org/10.1021/acsami.0c00027 104. Kim D, Kim T, Lee YG, 2019, 4D printed bifurcated stents
93. Wu P, Yu T, Chen M, et al., 2022, Effect of printing speed with Kirigami-inspired structures. J Vis Exp, 149: e59746.
and part geometry on the self-deformation behaviors of 4D https://doi.org/10.3791/59746
Volume 9 Issue 5 (2023) 336 https://doi.org/10.18063/ijb.764

