Page 344 - IJB-9-5
P. 344

International Journal of Bioprinting                              Review of 4D-printed smart medical implants



            82.  Tang ZH, Gao ZW, Jia SH,  et  al., 2017, Graphene-based   printed shape memory PLA using FDM. J Manuf Process, 84:
               polymer bilayers with superior light-driven properties   1507–1518.
               for remote construction of 3D structures.  Adv Sci, 4(5):   https://doi.org/10.1016/j.jmapro.2022.11.007
               1600437.
                                                               94.  Zhao W, Li N, Liu LW, et al., 2022, Origami derived self-
               https://doi.org/10.1002/advs.201600437             assembly stents fabricated via 4D printing. Compos Struct,
            83.  Lee AY, Zhou A, An J, et al., 2020, Contactless reversible   293: 115669.
               4D-printing for 3D-to-3D shape morphing.  Virtual Phys   https://doi.org/10.1016/j.compstruct.2022.115669
               Prototyp, 15(4): 481–495.
                                                               95.  Tao R, Ji LT, Li Y, et al., 2020, 4D printed origami
               https://doi.org/10.1080/17452759.2020.1822189      metamaterials with tunable compression twist behavior and
            84.  Deng H, Zhang C, Sattari K, et al., 2021, 4D printing elastic   stress-strain curves. Compos Part B Eng, 201: 108344.
               composites for strain-tailored multistable shape morphing.   https://doi.org/10.1016/j.compositesb.2020.108344
               ACS Appl Mater Interfaces, 13(11): 12719–12725.
                                                               96.  Zhang YJ, Wang LC, Song WL, et al., 2020, Hexagon-twist
               https://doi.org/10.1021/acsami.0c17618             frequency reconfigurable  antennas via multi-material
            85.  Qu G, Huang J, Li Z, et al., 2022, 4D-printed bilayer hydrogel   printed thermo-responsive origami structures. Front Mater,
               with adjustable bending degree for enteroatmospheric   7: 600863.
               fistula closure. Mater Today Bio, 16: 100363.      https://doi.org/10.3389/fmats.2020.600863
               https://doi.org/10.1016/j.mtbio.2022.100363     97.  Xin XZ, Liu LW, Liu YJ, et al., 2020, Origami-inspired self-

            86.  Hagaman DE, Leist S, Zhou J, et al., 2018, Photoactivated   deployment 4D printed honeycomb sandwich structure
               polymeric bilayer actuators fabricated via 3D printing. ACS   with large shape transformation. Smart Mater Struct, 29(6):
               Appl Mater Interfaces, 10(32): 27308–27315.        065015.
               https://doi.org/10.1021/acsami.8b08503             https://doi.org/10.1088/1361-665X/ab85a4
            87.  Liu Y, Lei Y, Hua L, et al., 2021, Biomimetic self-deformation   98.  Yamamura S, Iwase E, 2021, Hybrid hinge structure with
               of polymer interpenetrating network with stretch-induced   elastic hinge on self-folding of 4D printing using a fused
               anisotropicity. Chem Mater, 33(21): 8351–8359.     deposition modeling 3D printer. Mater Des, 203: 109605.
               https://doi.org/10.1021/acs.chemmater.1c02639      https://doi.org/10.1016/j.matdes.2021.109605
            88.  Athanasopoulos N, Siakavellas NJ, 2018, Bioinspired   99.  Van Manen T, Janbaz S, Jansen KMB, et al., 2021, 4D printing
               temperature-responsive multilayer films and their   of reconfigurable metamaterials and devices.  Commun
               performance under thermal fatigue. Biomimetics, 3(3): 20.  Mater, 2(1): 56.
               https://doi.org/10.3390/biomimetics3030020         https://doi.org/10.1038/s43246-021-00165-8
            89.  Ding A, Jeon O, Tang R, et al., 2021, Cell-laden multiple-  100. Ge Q, Dunn CK, Qi HJ, et al., 2014, Active origami by 4D
               step and reversible 4D hydrogel actuators to mimic dynamic   printing. Smart Mater Struct, 23(9): 094007.
               tissue morphogenesis. Adv Sci, 8(9): 2004616.
                                                                  https://doi.org/10.1088/0964-1726/23/9/094007
               https://doi.org/10.1002/advs.202004616
                                                               101. Yin  JC,  Fan  WX,  Xu  ZH, et al.,  2022,  Precisely  defining
            90.  Ding AX, Jeon O, Cleveland D, et al., 2022, Jammed micro-  local gradients of stimuli-responsive hydrogels for complex
               flake hydrogel for four-dimensional living cell bioprinting.   2D-to-4D shape evolutions. Small, 18(2): 2104440.
               Adv Mater, 34(15): 2109394.
                                                                  https://doi.org/10.1002/smll.202104440
               https://doi.org/10.1002/adma.202109394
                                                               102. Liu G, Zhao Y, Wu G, et al., 2018, Origami and 4D printing of
            91.  Ding AX, Lee SJ, Ayyagari S, et al., 4D biofabrication via
               instantly generated graded hydrogel scaffolds. Bioact Mater,   elastomer-derived ceramic structures. Sci Adv, 4(8): eaat0641.
               7: 324–332.                                        https://doi.org/10.1126/sciadv.aat0641
               https://doi.org/10.1016/j.bioactmat.2021.05.021  103. Langford T, Mohammed A, Essa K, et al., 2021, 4D printing

            92.  Ren L, Li B, He Y, et al., 2020, Programming shape-morphing   of origami structures for minimally invasive surgeries using
               behavior of liquid crystal elastomers via parameter-encoded   functional scaffold. Appl Sci Basel, 11(1): 332.
               4D printing. ACS Appl Mater Interfaces, 12(13): 15562–15572.  https://doi.org/10.3390/app11010332
               https://doi.org/10.1021/acsami.0c00027          104. Kim D, Kim T, Lee YG, 2019, 4D printed bifurcated stents
            93.  Wu P, Yu T, Chen M, et al., 2022, Effect of printing speed   with Kirigami-inspired structures. J Vis Exp, 149: e59746.
               and part geometry on the self-deformation behaviors of 4D   https://doi.org/10.3791/59746

            Volume 9 Issue 5 (2023)                        336                         https://doi.org/10.18063/ijb.764
   339   340   341   342   343   344   345   346   347   348   349