Page 345 - IJB-9-5
P. 345

International Journal of Bioprinting                             Review of 4D-printed smart medical implants



            105. Ge Q, Qi HJ, Dunn ML, 2013, Active materials by four-  116. Zhang F, Wang L, Zheng Z, et al., 2019, Magnetic
               dimension printing. Appl Phys Lett, 103(13): 131901.  programming of 4D printed shape memory composite
                                                                  structures. Compos Part A Appl Sci Manuf, 125: 105571.
               https://doi.org/10.1063/1.4819837
                                                                  https://doi.org/10.1016/j.compositesa.2019.105571
            106. Varga LG, Takacs JD, Domotor FD, et al., 2018, Tailor-
               made  3D  model  design  of  human  implants  for  additive   117. Zheng Y, Han MKL, Jiang Q, et  al., 2020, 4D hydrogel
               technologies.  Proceedings of the  23rd International   for dynamic cell culture with orthogonal, wavelength-
               Conference on Manufacturing (Manufacturing).       dependent mechanical and biochemical cues. Mater Horiz,
                                                                  7(1): 111–116.
               https://doi.org/10.1088/1757-899x/448/1/012060
                                                                  https://doi.org/10.1039/c9mh00665f
            107. Lee MY, Chang CC, Lin CC, et al., 2002, Custom implant   118. Rosales  AM,  Anseth  KS,  2016,  The  design of  reversible
               design for patients with cranial defects. IEEE Eng Med Biol   hydrogels to capture extracellular matrix dynamics. Nat Rev
               Mag, 21(2): 38–44.
                                                                  Mater, 1(2): 15012.
               https://doi.org/10.1109/memb.2002.1000184          https://doi.org/10.1038/natrevmats.2015.12
            108. You D, Chen G, Liu C, et al., 2021, 4D printing of multi-  119. Farrukh A, Paez JI, del Campo A, 2019, 4D biomaterials for
               responsive membrane for accelerated in vivo bone healing   light-guided angiogenesis. Adv Funct Mater, 29(6): 1807734.
               via remote regulation of stem cell fate.  Adv Funct Mater,
               31(40): 2103920.                                   https://doi.org/10.1002/adfm.201807734
               https://doi.org/10.1002/adfm.202103920          120. Liu L, Shadish JA, Arakawa CK, et al., 2018, Cyclic stiffness
                                                                  modulation of cell-laden protein-polymer hydrogels in
            109. Cui C, Kim D-O, Pack MY, et al., 2020, 4D printing of
               self-folding  and  cell-encapsulating  3D  microstructures  as   response to user-specified stimuli including light.  Adv
                                                                  Biosyst, 2(12): 1800240.
               scaffolds for tissue-engineering applications. Biofabrication,
               12(4): 045018.                                     https://doi.org/10.1002/adbi.201800240
               https://doi.org/10.1088/1758-5090/aba502        121. Douillet C, Nicodeme M, Hermant L, et al., 2022, From local
            110. Wang Y, Cui H, Wang Y, et al., 4D printed cardiac construct   to  global  matrix  organization  by  fibroblasts:  A  4D  laser-
               with aligned myofibers and adjustable curvature for   assisted bioprinting approach. Biofabrication, 14(2): 025006.
               myocardial regeneration. ACS Appl Mater Interfaces, 13(11):   https://doi.org/10.1088/1758-5090/ac40ed
               12746–12758.
                                                               122. Diaz-Payno PJ, Kalogeropoulou M, Muntz I, et al., 2022,
               https://doi.org/10.1021/acsami.0c17610             Swelling-dependent shape-based transformation of a human
            111. Zhang C, Cai D, Liao P, et al., 2021, 4D printing of shape-  mesenchymal stromal cells-laden 4D bioprinted construct
               memory polymeric scaffolds for adaptive biomedical   for cartilage tissue engineering. Adv Healthc Mater, 12(2):
               implantation. Acta Biomater, 122: 101–110.         2201891.
               https://doi.org/10.1016/j.actbio.2020.12.042       https://doi.org/10.1002/adhm.202201891
            112. Lin C, Lv J, Li Y, et al., 2019, 4D-printed biodegradable and   123. Arakawa CK, Badeau BA, Zheng Y, et al., 2017, Multicellular
               remotely controllable shape memory occlusion devices. Adv   vascularized engineered tissues through user-programmable
               Funct Mater, 29(51): 1906569.                      biomaterial photodegradation. Adv Mater, 29(37): 1703156.
               https://doi.org/10.1002/adfm.201906569             https://doi.org/10.1002/adma.201703156
            113. Hearon K, Wierzbicki MA, Nash LD,  et  al., 2015, A   124. Hendrikson WJ, Rouwkema J, Clementi F, et al., 2017, Towards
               processable shape memory polymer system for biomedical   4D printed scaffolds for tissue engineering: Exploiting 3D
               applications. Adv Healthc Mater, 4(9): 1386–1398.  shape memory polymers to deliver time-controlled stimulus
                                                                  on cultured cells. Biofabrication, 9(3): 031001.
               https://doi.org/10.1002/adhm.201500156
            114. Hu Y, Wang Z, Jin D, et al., 2020, Botanical-inspired 4D   https://doi.org/10.1088/1758-5090/aa8114
               printing of hydrogel at the microscale.  Adv Funct Mater,   125. Chen M, Li L, Xia L, et al., 2020, Temperature responsive
               30(4): 1907377.                                    shape-memory scaffolds with  circumferentially  aligned
               https://doi.org/10.1002/adfm.201907377             nanofibers for guiding smooth muscle cell behavior.
                                                                  Macromol Biosci, 20(2): 1900312.
            115. Zhou W, Duan Z, Zhao J, et al., 2022, Glucose and MMP-
               9 dual-responsive hydrogel with temperature sensitive   https://doi.org/10.1002/mabi.201900312
               self-adaptive shape and controlled drug release accelerates   126. Miao S, Cui H, Esworthy T, et al., 2020, 4D self-morphing
               diabetic wound healing. Bioact Mater, 17: 1–17.    culture substrate for modulating cell differentiation. Adv Sci,
               https://doi.org/10.1016/j.bioactmat.2024.01.004    7(6): 1902403.


            Volume 9 Issue 5 (2023)                        337                         https://doi.org/10.18063/ijb.764
   340   341   342   343   344   345   346   347   348   349   350