Page 342 - IJB-9-5
P. 342

International Journal of Bioprinting                              Review of 4D-printed smart medical implants



            39.  Wan X, He Y, Liu Y, et al., 2022, 4D printing of multiple shape   50.  Sarraf M, Rezvani Ghomi E, Alipour S, et al., 2022, A state-
               memory polymer and nanocomposites with biocompatible,   of-the-art review of the fabrication and characteristics of
               programmable and selectively actuated properties.  Addit   titanium and its alloys for biomedical applications. Bio-Des
               Manuf, 53: 102689.                                 Manuf, 5(2): 371–395.
               https://doi.org/10.1016/j.addma.2022.102689        https://doi.org/10.1007/s42242-021-00170-3
            40.  El-Husseiny HM, Mady EA, Hamabe L, et al., 2022, Smart/  51.  Guan Z, Wang L, Bae J, 2022, Advances in 4D printing of
               stimuli-responsive  hydrogels:  Cutting-edge platforms for   liquid crystalline elastomers: Materials, techniques, and
               tissue engineering and other biomedical applications. Mater   applications. Mater Horiz, 9(7): 1825–1849.
               Today Bio, 13: 100186.
                                                                  https://doi.org/10.1039/d2mh00232a
               https://doi.org/10.1016/j.mtbio.2021.100186
                                                               52.  Wu J, Yao S, Zhang H, et al., 2021, Liquid crystal elastomer
            41.  Yesilyurt V, Webber MJ, Appel EA, et al., 2016, Injectable
               self-healing glucose-responsive hydrogels with pH-regulated   metamaterials with giant biaxial thermal shrinkage for
               mechanical properties. Adv Mater, 28(1): 86–91.    enhancing skin regeneration. Adv Mater, 33(45): 2106175.
               https://doi.org/10.1002/adma.201502902             https://doi.org/10.1002/adma.202106175
            42.  Shafranek RT, Millik SC, Smith PT, et al., 2019, Stimuli-  53.  Javadzadeh M, del Barrio J, Sanchez-Somolinos C, 2023,
               responsive materials in additive manufacturing. Prog Polym   Melt electrowriting of liquid crystal elastomer scaffolds with
               Sci, 93: 36–67.                                    programmed mechanical response. Adv Mater, 35(14): 2209244.
               https://doi.org/10.1016/j.progpolymsci.2019.03.002  https://doi.org/10.1002/adma.202209244
                                                               54.  Lee J-H, Bae J, Hwang JH, et al., 2022, Robust and
            43.  Willner I, 2017, Stimuli-controlled hydrogels and their
               applications. Acc Chem Res, 50(4): 657–658.        reprocessable artificial muscles based on liquid crystal
                                                                  elastomers with dynamic thiourea bonds. Adv Funct Mater,
               https://doi.org/10.1021/acs.accounts.7b00142       32(13): 2110360.
            44.  Nagase K, 2021, Thermoresponsive interfaces obtained   https://doi.org/10.1002/adfm.202110360
               using poly (N-isopropylacrylamide)-based copolymer for   55.  Hou W, Wang J, Lv J-a, 2023, Bioinspired liquid crystalline
               bioseparation and tissue engineering applications.  Adv   spinning  enables  scalable  fabrication  of  high-performing
               Colloid Interface Sci, 295: 102487.
                                                                  fibrous artificial muscles. Adv Mater, 35(16): 2211800.
               https://doi.org/10.1016/j.cis.2021.102487
                                                                  https://doi.org/10.1002/adma.202211800
            45.  Tang L, Wang L, Yang X, et al., 2021, Poly(N-  56.  Ula SW, Traugutt NA, Volpe RH, et al., 2018, Liquid crystal
               isopropylacrylamide)-based smart hydrogels: Design,   elastomers: An  introduction  and  review  of  emerging
               properties and applications. Prog Mater Sci, 115: 100702.
                                                                  technologies. Liq Cryst Rev, 6(1): 78–107.
               https://doi.org/10.1016/j.pmatsci.2020.100702      https://doi.org/10.1080/21680396.2018.1530155
            46.  Ma Y, Hua M, Wu S, et al., 2020, Bioinspired high-power-  57.  Lai A, Du Z, Gan CL, et al., 2013, Shape memory and
               density strong contractile hydrogel by programmable elastic   superelastic ceramics at small scales.  Science, 341(6153):
               recoil. Sci Adv, 6(47): eabd2520.                  1505–1508.
               https://doi.org/10.1126/sciadv.abd2520             https://doi.org/10.1126/science.1239745
            47.  Khoo ZX, Liu Y, An J, et al., 2018, A review of selective laser   58.  Wang F, Liu C, Yang H, et al., 2023, 4D printing of ceramic
               melted NiTi shape memory alloy. Materials, 11(4): 519.  structures. Addit Manuf, 63, 103411.
               https://doi.org/10.3390/ma11040519                 https://doi.org/10.1016/j.addma.2023.103411
            48.  Sahafnejad-Mohammadi  I,  Karamimoghadam  M,  59.  Chen S, Li J, Shi H, et al., 2023, Lightweight and geometrically
               Zolfagharian A, et al., 2022, 4D printing technology in   complex ceramics derived from 4D printed shape memory
               medical engineering: A narrative review. J Braz Soc Mech Sci   precursor with reconfigurability and programmability for
               Eng, 44(6): 233.                                   sensing and actuation applications. Chem Eng J, 455: 140655.
               https://doi.org/10.1007/s40430-022-03514-x         https://doi.org/10.1016/j.cej.2022.140655
            49.  Yuritsa Paez-Pidiache I, Luviano-Juarez A, Lozada-Castillo   60.  Wang X, Zhang Y, Shen P, et al., 2022, Preparation of 4D
               N, et al., 2021, Design, characterization and construction of   printed peripheral  vascular stent and  its  degradation
               an actuator based on shape memory alloys. MRS Adv, 6(39–  behavior under fluid shear stress after deployment. Biomater
               40): 907–912.                                      Sci, 10(9): 2302–2314.

               https://doi.org/10.1557/s43580-021-00158-2         https://doi.org/10.1039/d2bm00088a

            Volume 9 Issue 5 (2023)                        334                         https://doi.org/10.18063/ijb.764
   337   338   339   340   341   342   343   344   345   346   347