Page 342 - IJB-9-5
P. 342
International Journal of Bioprinting Review of 4D-printed smart medical implants
39. Wan X, He Y, Liu Y, et al., 2022, 4D printing of multiple shape 50. Sarraf M, Rezvani Ghomi E, Alipour S, et al., 2022, A state-
memory polymer and nanocomposites with biocompatible, of-the-art review of the fabrication and characteristics of
programmable and selectively actuated properties. Addit titanium and its alloys for biomedical applications. Bio-Des
Manuf, 53: 102689. Manuf, 5(2): 371–395.
https://doi.org/10.1016/j.addma.2022.102689 https://doi.org/10.1007/s42242-021-00170-3
40. El-Husseiny HM, Mady EA, Hamabe L, et al., 2022, Smart/ 51. Guan Z, Wang L, Bae J, 2022, Advances in 4D printing of
stimuli-responsive hydrogels: Cutting-edge platforms for liquid crystalline elastomers: Materials, techniques, and
tissue engineering and other biomedical applications. Mater applications. Mater Horiz, 9(7): 1825–1849.
Today Bio, 13: 100186.
https://doi.org/10.1039/d2mh00232a
https://doi.org/10.1016/j.mtbio.2021.100186
52. Wu J, Yao S, Zhang H, et al., 2021, Liquid crystal elastomer
41. Yesilyurt V, Webber MJ, Appel EA, et al., 2016, Injectable
self-healing glucose-responsive hydrogels with pH-regulated metamaterials with giant biaxial thermal shrinkage for
mechanical properties. Adv Mater, 28(1): 86–91. enhancing skin regeneration. Adv Mater, 33(45): 2106175.
https://doi.org/10.1002/adma.201502902 https://doi.org/10.1002/adma.202106175
42. Shafranek RT, Millik SC, Smith PT, et al., 2019, Stimuli- 53. Javadzadeh M, del Barrio J, Sanchez-Somolinos C, 2023,
responsive materials in additive manufacturing. Prog Polym Melt electrowriting of liquid crystal elastomer scaffolds with
Sci, 93: 36–67. programmed mechanical response. Adv Mater, 35(14): 2209244.
https://doi.org/10.1016/j.progpolymsci.2019.03.002 https://doi.org/10.1002/adma.202209244
54. Lee J-H, Bae J, Hwang JH, et al., 2022, Robust and
43. Willner I, 2017, Stimuli-controlled hydrogels and their
applications. Acc Chem Res, 50(4): 657–658. reprocessable artificial muscles based on liquid crystal
elastomers with dynamic thiourea bonds. Adv Funct Mater,
https://doi.org/10.1021/acs.accounts.7b00142 32(13): 2110360.
44. Nagase K, 2021, Thermoresponsive interfaces obtained https://doi.org/10.1002/adfm.202110360
using poly (N-isopropylacrylamide)-based copolymer for 55. Hou W, Wang J, Lv J-a, 2023, Bioinspired liquid crystalline
bioseparation and tissue engineering applications. Adv spinning enables scalable fabrication of high-performing
Colloid Interface Sci, 295: 102487.
fibrous artificial muscles. Adv Mater, 35(16): 2211800.
https://doi.org/10.1016/j.cis.2021.102487
https://doi.org/10.1002/adma.202211800
45. Tang L, Wang L, Yang X, et al., 2021, Poly(N- 56. Ula SW, Traugutt NA, Volpe RH, et al., 2018, Liquid crystal
isopropylacrylamide)-based smart hydrogels: Design, elastomers: An introduction and review of emerging
properties and applications. Prog Mater Sci, 115: 100702.
technologies. Liq Cryst Rev, 6(1): 78–107.
https://doi.org/10.1016/j.pmatsci.2020.100702 https://doi.org/10.1080/21680396.2018.1530155
46. Ma Y, Hua M, Wu S, et al., 2020, Bioinspired high-power- 57. Lai A, Du Z, Gan CL, et al., 2013, Shape memory and
density strong contractile hydrogel by programmable elastic superelastic ceramics at small scales. Science, 341(6153):
recoil. Sci Adv, 6(47): eabd2520. 1505–1508.
https://doi.org/10.1126/sciadv.abd2520 https://doi.org/10.1126/science.1239745
47. Khoo ZX, Liu Y, An J, et al., 2018, A review of selective laser 58. Wang F, Liu C, Yang H, et al., 2023, 4D printing of ceramic
melted NiTi shape memory alloy. Materials, 11(4): 519. structures. Addit Manuf, 63, 103411.
https://doi.org/10.3390/ma11040519 https://doi.org/10.1016/j.addma.2023.103411
48. Sahafnejad-Mohammadi I, Karamimoghadam M, 59. Chen S, Li J, Shi H, et al., 2023, Lightweight and geometrically
Zolfagharian A, et al., 2022, 4D printing technology in complex ceramics derived from 4D printed shape memory
medical engineering: A narrative review. J Braz Soc Mech Sci precursor with reconfigurability and programmability for
Eng, 44(6): 233. sensing and actuation applications. Chem Eng J, 455: 140655.
https://doi.org/10.1007/s40430-022-03514-x https://doi.org/10.1016/j.cej.2022.140655
49. Yuritsa Paez-Pidiache I, Luviano-Juarez A, Lozada-Castillo 60. Wang X, Zhang Y, Shen P, et al., 2022, Preparation of 4D
N, et al., 2021, Design, characterization and construction of printed peripheral vascular stent and its degradation
an actuator based on shape memory alloys. MRS Adv, 6(39– behavior under fluid shear stress after deployment. Biomater
40): 907–912. Sci, 10(9): 2302–2314.
https://doi.org/10.1557/s43580-021-00158-2 https://doi.org/10.1039/d2bm00088a
Volume 9 Issue 5 (2023) 334 https://doi.org/10.18063/ijb.764

