Page 343 - IJB-9-5
P. 343

International Journal of Bioprinting                             Review of 4D-printed smart medical implants



            61.  Lee S, Bang D, Park J-O, et al., 2022, Programmed shape-  71.  Li M, Fu S, Lucia LA, et al., 2020, Ultra-efficient photo-
               morphing material using single-layer 4D printing system.   triggerable healing and shape-memory nanocomposite
               Micromachines, 13(2): 243.                         materials doped with copper sulfide nanoparticles. Compos
                                                                  Sci Technol, 199: 108371.
               https://doi.org/10.3390/mi13020243
                                                                  https://doi.org/10.1016/j.compscitech.2020.108371
            62.  Kuhnt T, Camarero-Espinosa S, Ghahfarokhi MT,  et  al.,
               2022, 4D printed shape morphing biocompatible materials   72.  Koh TY, Sutradhar A, 2022, Untethered selectively actuated
               based on anisotropic ferromagnetic nanoparticles.  Adv   microwave 4D printing through ferromagnetic PLA. Addit
               Funct Mate, 32(50): 2202539.                       Manuf, 56: 102866.

               https://doi.org/10.1002/adfm.202202539             https://doi.org/10.1016/j.addma.2022.102866
                                                               73.  Jamal M, Kadam SS, Xiao R,  et al., 2013, Bio-origami
            63.  Siminska-Stanny J, Niziol M, Szymczyk-Ziolkowska P, et al.,
               2022, 4D printing of patterned multimaterial magnetic   hydrogel scaffolds composed of photocrosslinked PEG
               hydrogel actuators. Addit Manuf, 49: 102506.       bilayers. Adv Healthc Mater, 2(8): 1142–1150.
                                                                  https://doi.org/10.1002/adhm.201200458
               https://doi.org/10.1016/j.addma.2021.102506
                                                               74.  Kwag HR, Serbo JV, Korangath P, et al., 2016, A self-folding
            64.  Wang Z, Wu Y, Wu D, et al., 2022, Soft magnetic composites   hydrogel in  vitro model  for ductal  carcinoma.  Tissue Eng
               for highly deformable actuators by four-dimensional   Part C Methods, 22(4): 398–407.
               electrohydrodynamic printing.  Compos Part B Eng, 231:
               109596.                                            https://doi.org/10.1089/ten.tec.2015.0442
               https://doi.org/10.1016/j.compositesb.2021.109596  75.  Mulakkal MC, Trask RS, Ting VP, et al., 2018, Responsive
            65.  Dong X, Zhang F, Wang L, et al., 2022, 4D printing of   cellulose-hydrogel composite ink for 4D printing.  Mater
               electroactive shape-changing composite structures and their   Des, 160: 108–118.
               programmable behaviors. Compos Part A Appl Sci Manuf,   https://doi.org/10.1016/j.matdes.2018.09.009
               157: 106925.
                                                               76.  Kim SH, Seo YB, Yeon YK, et al., 2020, 4D-bioprinted silk
               https://doi.org/10.1016/j.compositesa.2022.106925
                                                                  hydrogels for tissue engineering. Biomaterials, 260: 120281.
            66.  Pineda-Castillo  SA,  Luo  J,  Lee  H, et al.,  2021,  Effects  of
               carbon nanotube infiltration on a shape memory polymer-  https://doi.org/10.1016/j.biomaterials.2020.120281
               based device for brain aneurysm therapeutics: Design and   77.  Wu C, Chen J, Su C, 2022, 4D-printed pH sensing claw. Anal
               characterization of a joule-heating triggering mechanism.   Chim Acta, 1204: 339733.
               Adv Eng Mater, 23(6): 2100322.
                                                                  https://doi.org/10.1016/j.aca.2022.339733
               https://doi.org/10.1002/adem.202100322
                                                               78.  Cao P, Yang J, Gong J, et al., 2022, 4D printing of bilayer
            67.  Wang F, Wang W, Zhang C, et al., 2021, Scalable manufactured   tubular structure with dual-stimuli responsive based on self-
               bio-based polymer nanocomposite with instantaneous near-  rolling behavior. J Appl Polym Sci, 140(1): e53241.
               infrared light-actuated targeted shape memory and remote-
               controlled accurate self-healing.  Compos Part B Eng, 219:   https://doi.org/10.1002/app.53241
               108927.
                                                               79.  Rivera-Tarazona LK, Shukla T, Singh KA, et al., 2022, 4D
               https://doi.org/10.1016/j.compositesb.2021.108927  printing of engineered living materials.  Adv Funct Mater,
            68.  Chen Y, Zhao X, Luo C, et al., 2020, A facile fabrication of   32(4): 2106843.
               shape memory polymer nanocomposites with fast light-  https://doi.org/10.1002/adfm.202106843
               response and self-healing performance. Compos Part A Appl
               Sci Manuf, 135: 105931.                         80.  Grassi G, Sparrman B, Paoletti I, et al., 2021, 4D soft material
                                                                  systems.  Proceedings of the  3rd International Conference
               https://doi.org/10.1016/j.compositesa.2020.105931
                                                                  on Computational Design and Robotic Fabrication (CDRF)
            69.  Chen  Y,  Zhao  X,  Li  Y, et al.,  2021,  Light-  and  magnetic-  (DigitalFUTURES): 2021 2021; Tongji Univ, Coll Architecture
               responsive synergy controlled reconfiguration of polymer   & Urban Planning, Shanghai, PEOPLES R CHINA,
               nanocomposites with shape memory assisted self-healing   201–210.
               performance for soft robotics. J Mater Chem C, 9(16): 5515–
               5527.                                              https://doi.org/10.1007/978-981-16-5983-6_19
               https://doi.org/10.1039/d1tc00468a              81.  Zhou LY, Ye JH, Fu JZ, et al., 2020, 4D printing of high-
                                                                  performance thermal-responsive liquid metal elastomers
            70.  Deng Y, Zhang F, Jiang M, et al., 2022, Programmable 4D   driven by embedded microliquid chambers. ACS Appl Mater
               printing of photoactive shape memory composite structures.   Interfaces, 12(10): 12068–12074.
               ACS Appl Mater Interfaces, 14(37): 42568–42577.
                                                                  https://doi.org/10.1021/acsami.9b22433
               https://doi.org/10.1021/acsami.2c13982

            Volume 9 Issue 5 (2023)                        335                         https://doi.org/10.18063/ijb.764
   338   339   340   341   342   343   344   345   346   347   348