Page 340 - IJB-9-5
P. 340

International Journal of Bioprinting                              Review of 4D-printed smart medical implants



            and Jiangsu Provincial Medical Innovation Center      https://doi.org/10.1016/j.eurpolymj.2022.111128
            (CXZX202217).                                      7.   Osouli-Bostanabad K, Masalehdan T, Kapsa RMI, et al.,
                                                                  2022, Traction of 3D and 4D printing in the healthcare
            Conflict of interest                                  industry: From drug delivery and analysis to regenerative
                                                                  medicine. ACS BiomaterSci Eng, 8(7): 2764–2797.
            The authors declare no conflicts of interest.
                                                                  https://doi.org/10.1021/acsbiomaterials.2c000942764
            Author contributions                               8.   Li Y-C, Zhang YS, Akpek A, et al., 2017, 4D bioprinting: The
                                                                  next-generation technology for biofabrication enabled by
            Conceptualization: Jianan Ren, Xiuwen Wu, Zongan Li,   stimuli-responsive materials. Biofabrication, 9(1): 012001.
               Jinjian Huang, Guiwen Qu                           https://doi.org/10.1088/1758-5090/9/1/012001
            Supervision: Jianan Ren
            Visualization: Guosheng Gu                         9.   Huang J, Xia S, Li Z, et al., 2021, Applications of four-
            Writing – original draft: Guiwen Qu                   dimensional printing in emerging directions: Review and
            Writing – review & editing: Jinjian Huang             prospects. J Mater Sci Technol, 91: 105–120.
                                                                  https://doi.org/10.1016/j.jmst.2021.02.040
            Ethics approval and consent to participate         10.  Gao B, Yang Q, Zhao X, et al., 2016, 4D bioprinting for

            Not applicable.                                       biomedical applications. Trends Biotechnol, 34(9): 746–756.
                                                                  https://doi.org/10.1016/j.tibtech.2016.03.004
            Consent for publication                            11.  Yang Q, Gao B, Xu F, 2020, Recent advances in 4D

            Not applicable.                                       bioprinting. Biotechnol J, 15(1): 1900086.
                                                                  https://doi.org/10.1002/biot.201900086
            Availability of data                               12.  Kirillova A, Maxson R, Stoychev G, et al., 2017, 4D
            Not applicable.                                       biofabrication using shape-morphing hydrogels. Adv Mater,
                                                                  29(46): 1703443.
            Reference                                             https://doi.org/10.1002/adma.201703443

            1.   Liu G, He Y, Liu P, et al., 2020, Development of bioimplants   13.  Yang GH, Yeo M, Koo YW, et al., 2019, 4D bioprinting:
               with 2D, 3D, and 4D additive manufacturing materials.   Technological advances in biofabrication. Macromol Biosci,
               Engineering, 6(11): 1232–1243.                     19(5): 1800441.
               https://doi.org/10.1016/j.eng.2020.04.015          https://doi.org/10.1002/mabi.201800441
            2.   Dixon DT, Gomillion CT, 2022, Conductive scaffolds for   14.  Constante G, Apsite I, Alkhamis H, et al., 2021, 4D
               bone tissue engineering: Current state and future outlook. J   biofabrication using a combination of 3D printing and
               Funct Biomater, 13(1): 1.                          melt-electrowriting of shape-morphing polymers. ACS Appl
                                                                  Mater Interfaces, 13(11): 12767–12776.
               https://doi.org/10.3390/jfb13010001
                                                                  https://doi.org/10.1021/acsami.0c18608
            3.   Cockerill I, See CW, Young ML, et al., 2021, Designing better
               cardiovascular stent materials: A learning curve. Adv Funct   15.  Li J, Wu C, Chu PK, et al., 2020, 3D printing of hydrogels:
               Mater, 31(1): 2005361.                             Rational  design  strategies  and  emerging  biomedical
                                                                  applications. Mater Sci Eng, 140: 100543.
               https://doi.org/10.1002/adfm.202005361
                                                                  https://doi.org/10.1016/j.mser.2020.100543
            4.   Teo AJT, Mishra A, Park I, et al., 2016, Polymeric biomaterials
               for medical  implants and  devices.  ACS Biomater Sci Eng,   16.  Derakhshanfar S, Mbeleck R, Xu K, et al., 2018, 3D
               2(4): 454–472.                                     bioprinting for biomedical devices and tissue engineering:
                                                                  A review of recent trends and advances. Bioact Mater, 3(2):
               https://doi.org/10.1021/acsbiomaterials.5b00429
                                                                  144–156.
            5.   Azlin MNM, Ilyas RA, Zuhri MYM, et al., 2022, 3D printing
               and shaping polymers, composites, and nanocomposites: A   https://doi.org/10.1016/j.bioactmat.2017.11.008
               review. Polymers, 14(1): 180.                   17.  Lee H, Ahn S, Bonassar LJ, et al., 2013, Cell-laden
                                                                  poly(epsilon-caprolactone)/alginate  hybrid  scaffolds
               https://doi.org/10.3390/polym14010180
                                                                  fabricated by an aerosol cross-linking process for obtaining
            6.   Sonatkar J, Kandasubramanian B, Ismail SO, 2022, 4D   homogeneous cell distribution: Fabrication, seeding
               printing: Pragmatic progression in biofabrication.  Eur   efficiency, and cell proliferation and distribution. Tissue Eng
               Polym J, 169: 111128.                              Part C Methods, 19(10), 784–793.


            Volume 9 Issue 5 (2023)                        332                         https://doi.org/10.18063/ijb.764
   335   336   337   338   339   340   341   342   343   344   345