Page 360 - IJB-9-5
P. 360
International Journal of Bioprinting 3D printing of tough and self-healing hydrogels
Ethics approval and consent to participate 10. Zhang YS, Khademhosseini A, 2017, Advances in
engineering hydrogels. Science, 356(6337): eaaf3627.
Not applicable.
http://doi.org/10.1126/science.aaf3627
Consent for publication 11. Liu Y, He W, Zhang Z, et al., 2018, Recent developments in
tough hydrogels for biomedical applications. Gels, 4(2): 46.
Not applicable.
https://doi.org/10.3390/gels4020046
Availability of data 12. Tee BCK, Wang C, Allen R, et al., 2012, An electrically and
mechanically self-healing composite with pressure- and
Not applicable. flexion-sensitive properties for electronic skin applications.
Nat Nanotechnol, 7(12): 825–832.
References http://doi.org/10.1038/nnano.2012.192
13. Chen Z, Luo J, Hu Y, et al., 2022, Fabrication of lignin
1. Stanford V, 2004, Biosignals offer potential for direct
interfaces and health monitoring. IEEE Pervasive Comput, reinforced hybrid hydrogels with antimicrobial and self-
3(1): 99–103. adhesion for strain sensors. Int J Biol Macromol, 222
(Part A): 487–496.
https://doi.org/10.1109/MPRV.2004.1269140
https://doi.org/10.1016/j.ijbiomac.2022.09.197
2. Swapna M, Viswanadhula UM, Aluvalu R, et al., 2022, 14. Guo Y, Bae J, Fang Z, et al., 2020, Hydrogels and hydrogel-
Bio-signals in medical applications and challenges using derived materials for energy and water sustainability. Chem
artificial intelligence. J Sens Actuator Netw, 11(1): 17. Rev, 120(15): 7642–7707.
https://doi.org/10.3390/jsan11010017 http://doi.org/10.1021/acs.chemrev.0c00345
3. Dash A, Cudworth II G, 1998, Therapeutic applications 15. Lu B, Lin F, Jiang X, et al., 2017, One-pot assembly of
of implantable drug delivery systems. J Pharmacol Toxicol microfibrillated cellulose reinforced PVA–borax hydrogels
Methods, 40: 1–12. with self-healing and pH-responsive properties. ACS Sustain
https://doi.org/10.1002/adma.201902783 Chem Eng, 5(1): 948–956.
4. Liu Y, Yang T, Zhang Y, et al., 2019, Ultrastretchable and http://doi.org/10.1021/acssuschemeng.6b02279
wireless bioelectronics based on all-hydrogel microfluidics. 16. Billiet T, Vandenhaute M, Schelfhout J, et al., 2012, A review
Adv Mat, 31(39): 1902783. of trends and limitations in hydrogel-rapid prototyping for
https://doi.org/10.1002/adma.201902783 tissue engineering. Biomaterials, 33(26): 6020–6041.
https://doi.org/10.1016/j.biomaterials.2012.04.050
5. Webb RC, Bonifas AP, Behnaz A, et al., 2013, Ultrathin
conformal devices for precise and continuous thermal 17. Namgung H, Kaba AM, Oh H, et al., 2022, Quantitative
characterization of human skin. Nat Mater, 12(10): 938–44. determination of 3D-printing and surface-treatment
conditions for direct-printed microfluidic devices. BioChip
http://doi.org/10.1038/nmat3755
J, 16(1): 82–98.
6. Gao G, Yang F, Zhou F, et al., 2020, Bioinspired self‐healing http://doi.org/10.1007/s13206-022-00048-1
human–machine interactive touch pad with pressure‐
sensitive adhesiveness on targeted substrates. Adv Mat, 18. Tan HW, Choong YYC, Kuo CN, et al., 2022, 3D printed
32(50): 2004290. electronics: Processes, materials and future trends. Prog
Mater Sci, 127: 100945.
https://doi.org/10.1002/adma.202004290
https://doi.org/10.1016/j.pmatsci.2022.100945
7. Yuk H, Lu B, Zhao X, 2019, Hydrogel bioelectronics. Chem
Soc Rev, 48(6): 1642–1667. 19. Chen J, Peng Q, Thundat T, et al., 2019, Stretchable,
injectable, and self-healing conductive hydrogel enabled by
http://doi.org/10.1039/C8CS00595H multiple hydrogen bonding toward wearable electronics.
8. Appel EA, del Barrio J, Loh XJ, et al., 2012, Supramolecular Chem Mater, 31(12): 4553–4563.
polymeric hydrogels. Chem Soc Rev, 41(18): 6195–6214. http://doi.org/10.1021/acs.chemmater.9b01239
http://doi.org/10.1039/C2CS35264H 20. Jin S, Kim Y, Son D, et al., 2022, Tissue adhesive, conductive,
9. Kifaro EG, Kim MJ, Jung S, et al., 2022, Direct reverse and injectable cellulose hydrogel ink for on-skin direct
transcription real-time PCR of viral RNA from saliva writing of electronics. Gels, 8(6): 336.
samples using hydrogel microparticles. Biochip J, 16(4): 21. Wei J, Wang J, Su S, et al., 2015, 3D printing of an extremely
409–421. tough hydrogel. RSC Adv, 5(99): 81324–81329.
http://doi.org/10.1007/s13206-022-00065-0 http://doi.org/10.1039/C5RA16362E
Volume 9 Issue 5 (2023) 352 https://doi.org/10.18063/ijb.765

