Page 360 - IJB-9-5
P. 360

International Journal of Bioprinting                            3D printing of tough and self-healing hydrogels



            Ethics approval and consent to participate         10.  Zhang  YS,  Khademhosseini  A,  2017,  Advances  in
                                                                  engineering hydrogels. Science, 356(6337): eaaf3627.
            Not applicable.
                                                                  http://doi.org/10.1126/science.aaf3627
            Consent for publication                            11.  Liu Y, He W, Zhang Z, et al., 2018, Recent developments in
                                                                  tough hydrogels for biomedical applications. Gels, 4(2): 46.
            Not applicable.
                                                                  https://doi.org/10.3390/gels4020046
            Availability of data                               12.  Tee BCK, Wang C, Allen R, et al., 2012, An electrically and
                                                                  mechanically self-healing composite with pressure- and
            Not applicable.                                       flexion-sensitive properties for electronic skin applications.
                                                                  Nat Nanotechnol, 7(12): 825–832.
            References                                            http://doi.org/10.1038/nnano.2012.192
                                                               13.  Chen Z, Luo J, Hu Y,  et al., 2022, Fabrication of lignin
            1.   Stanford V, 2004, Biosignals offer potential for direct
               interfaces and health monitoring. IEEE Pervasive Comput,   reinforced hybrid hydrogels with antimicrobial and self-
               3(1): 99–103.                                      adhesion for strain sensors. Int J Biol Macromol, 222
                                                                  (Part A): 487–496.
               https://doi.org/10.1109/MPRV.2004.1269140
                                                                  https://doi.org/10.1016/j.ijbiomac.2022.09.197
            2.   Swapna M, Viswanadhula UM, Aluvalu R,  et al., 2022,   14.  Guo Y, Bae J, Fang Z, et al., 2020, Hydrogels and hydrogel-
               Bio-signals in medical applications and challenges using   derived materials for energy and water sustainability. Chem
               artificial intelligence. J Sens Actuator Netw, 11(1): 17.  Rev, 120(15): 7642–7707.
               https://doi.org/10.3390/jsan11010017               http://doi.org/10.1021/acs.chemrev.0c00345
            3.   Dash A, Cudworth II G, 1998, Therapeutic applications   15.  Lu B, Lin F, Jiang X,  et al., 2017, One-pot assembly of
               of implantable drug delivery systems. J Pharmacol Toxicol   microfibrillated cellulose reinforced PVA–borax hydrogels
               Methods, 40: 1–12.                                 with self-healing and pH-responsive properties. ACS Sustain
               https://doi.org/10.1002/adma.201902783             Chem Eng, 5(1): 948–956.
            4.   Liu Y, Yang T, Zhang Y, et al., 2019, Ultrastretchable and   http://doi.org/10.1021/acssuschemeng.6b02279
               wireless bioelectronics based on all-hydrogel microfluidics.   16.  Billiet T, Vandenhaute M, Schelfhout J, et al., 2012, A review
               Adv Mat, 31(39): 1902783.                          of trends and limitations in hydrogel-rapid prototyping for
               https://doi.org/10.1002/adma.201902783             tissue engineering. Biomaterials, 33(26): 6020–6041.
                                                                  https://doi.org/10.1016/j.biomaterials.2012.04.050
            5.   Webb  RC,  Bonifas  AP,  Behnaz  A,  et al.,  2013,  Ultrathin
               conformal  devices  for  precise  and  continuous  thermal   17.  Namgung H, Kaba AM, Oh H,  et al., 2022, Quantitative
               characterization of human skin. Nat Mater, 12(10): 938–44.  determination of  3D-printing and  surface-treatment
                                                                  conditions for direct-printed microfluidic devices. BioChip
               http://doi.org/10.1038/nmat3755
                                                                  J, 16(1): 82–98.
            6.   Gao G, Yang F, Zhou F, et al., 2020, Bioinspired self‐healing   http://doi.org/10.1007/s13206-022-00048-1
               human–machine interactive touch pad with pressure‐
               sensitive adhesiveness on targeted substrates.  Adv Mat,   18.  Tan HW, Choong YYC, Kuo CN, et al., 2022, 3D printed
               32(50): 2004290.                                   electronics: Processes, materials and future trends.  Prog
                                                                  Mater Sci, 127: 100945.
               https://doi.org/10.1002/adma.202004290
                                                                  https://doi.org/10.1016/j.pmatsci.2022.100945
            7.   Yuk H, Lu B, Zhao X, 2019, Hydrogel bioelectronics. Chem
               Soc Rev, 48(6): 1642–1667.                      19.  Chen J, Peng Q, Thundat T,  et al., 2019, Stretchable,
                                                                  injectable, and self-healing conductive hydrogel enabled by
               http://doi.org/10.1039/C8CS00595H                  multiple hydrogen bonding toward wearable electronics.
            8.   Appel EA, del Barrio J, Loh XJ, et al., 2012, Supramolecular   Chem Mater, 31(12): 4553–4563.
               polymeric hydrogels. Chem Soc Rev, 41(18): 6195–6214.  http://doi.org/10.1021/acs.chemmater.9b01239
               http://doi.org/10.1039/C2CS35264H               20.  Jin S, Kim Y, Son D, et al., 2022, Tissue adhesive, conductive,
            9.   Kifaro  EG, Kim MJ,  Jung  S,  et al.,  2022, Direct  reverse   and injectable cellulose hydrogel ink for on-skin direct
               transcription real-time PCR of viral RNA from saliva   writing of electronics. Gels, 8(6): 336.
               samples using hydrogel microparticles.  Biochip J, 16(4):    21.  Wei J, Wang J, Su S, et al., 2015, 3D printing of an extremely
               409–421.                                           tough hydrogel. RSC Adv, 5(99): 81324–81329.
               http://doi.org/10.1007/s13206-022-00065-0          http://doi.org/10.1039/C5RA16362E


            Volume 9 Issue 5 (2023)                        352                         https://doi.org/10.18063/ijb.765
   355   356   357   358   359   360   361   362   363   364   365