Page 361 - IJB-9-5
P. 361
International Journal of Bioprinting 3D printing of tough and self-healing hydrogels
22. Song PA, Xu Z, Guo Q, 2013, Bioinspired strategy to reinforce 33. Sun TL, Luo F, Hong W, et al., 2017, Bulk energy dissipation
PVA with improved toughness and thermal properties mechanism for the fracture of tough and self-healing
via hydrogen-bond self-assembly. ACS Macro Lett, 2(12): hydrogels. Macromolecules, 50(7): 2923–2931.
1100–1104.
http://doi.org/10.1021/acs.macromol.7b00162
http://doi.org/10.1021/mz4005265
34. Zhou J, Vijayavenkataraman S, 2021, 3D-printable
23. George J, Sabapathi SN, Siddaramaiah, 2015, Water soluble conductive materials for tissue engineering and biomedical
polymer-based nanocomposites containing cellulose applications. Bioprinting, 24: e00166.
nanocrystals, in Eco-friendly Polymer Nanocomposites:
Processing and Properties, Thakur VK, Thakur MK (Eds), https://doi.org/10.1016/j.bprint.2021.e00166
Springer India, New Delhi, 259–293. 35. Smith PT, Basu A, Saha A, et al., 2018, Chemical modification
24. Meng Y, Cao J, Chen Y, et al., 2020, 3D printing of a poly(vinyl and printability of shear-thinning hydrogel inks for direct-
alcohol)-based nano-composite hydrogel as an artificial write 3D printing. Polymer, 152: 42–50.
cartilage replacement and the improvement mechanism of https://doi.org/10.1016/j.polymer.2018.01.070
printing accuracy. J Mater Chem B, 8(4): 677–690.
36. Zhou J, Yan H, Wang C, et al., 2022, 3D printing highly
http://doi.org/10.1039/C9TB02278C stretchable conductors for flexible electronics with low
25. Chen W, Li N, Ma Y, et al., 2019, Superstrong and tough signal hysteresis. Virtual Phys Prototyp, 17(1): 19–32.
hydrogel through physical cross-linking and molecular http://doi.org/10.1080/17452759.2021.1980283
alignment. Biomacromolecules, 20(12): 4476–4484.
37. Karolina Pierchala M, Kadumudi FB, Mehrali M, et al., 2021,
http://doi.org/10.1021/acs.biomac.9b01223 Soft electronic materials with combinatorial properties
26. Fan H, Wang J, Jin Z, 2018, Tough, swelling-resistant, generated via mussel-inspired chemistry and halloysite
self-healing, and adhesive dual-cross-linked hydrogels nanotube reinforcement. ACS Nano, 15(6): 9531–9549.
based on polymer–tannic acid multiple hydrogen bonds. http://doi.org/10.1021/acsnano.0c09204
Macromolecules, 51(5): 1696–1705.
38. Liu X, Liu J, Lin S, et al., 2020, Hydrogel machines. Mater
http://doi.org/10.1021/acs.macromol.7b02653
Today, 36: 102–124.
27. Jafari H, Ghaffari-Bohlouli P, Niknezhad SV, et al., 2022, https://doi.org/10.1016/j.mattod.2019.12.026
Tannic acid: A versatile polyphenol for design of biomedical
hydrogels. J Mater Chem B, 10(31): 5873–5912. 39. Lu Y, Biswas MC, Guo Z, et al., 2019, Recent developments
in bio-monitoring via advanced polymer nanocomposite-
http://doi.org/10.1039/D2TB01056A
based wearable strain sensors. Biosens Bioelectron, 123:
28. Shi S, Peng X, Liu T, et al., 2017, Facile preparation of 167–177.
hydrogen-bonded supramolecular polyvinyl alcohol-
glycerol gels with excellent thermoplasticity and mechanical https://doi.org/10.1016/j.bios.2018.08.037
properties. Polymer, 111: 168–176. 40. Dannert C, Stokke BT, Dias RS, 2019, Nanoparticle-hydrogel
29. Kang J, Son D, Wang G-JN, et al., 2018, Tough and water- composites: From molecular interactions to macroscopic
insensitive self-healing elastomer for robust electronic skin. behavior. Polymers, 11(2): 275.
Adv Mater, 30(13): 1706846. http://doi.org/ 10.3390/polym11020275
https://doi.org/10.1002/adma.201706846 41. Sawicki K, Czajka M, Matysiak-Kucharek M, et al., 2019,
30. Liu T, Jiao C, Peng X, et al., 2018, Super-strong and tough Toxicity of metallic nanoparticles in the central nervous
poly(vinyl alcohol)/poly(acrylic acid) hydrogels reinforced system. Nanotechnol Rev, 8(1): 175–200.
by hydrogen bonding. J Mater Chem B, 6(48): 8105–8114. http://doi.org/doi:10.1515/ntrev-2019-0017
http://doi.org/10.1039/C8TB02556H 42. Zheng W, Li Y, Xu L, et al., 2020, Highly stretchable, healable,
31. Qin H, Zhang T, Li N, et al., 2019, Anisotropic and self- sensitive double-network conductive hydrogel for wearable
healing hydrogels with multi-responsive actuating capability. sensor. Polymer, 211: 123095.
Nat Commun, 10(1): 2202. https://doi.org/10.1016/j.polymer.2020.123095
http://doi.org/10.1038/s41467-019-10243-8 43. Kim T, Park J, Sohn J, et al., 2016, Bioinspired, highly
32. Canadell J, Goossens H, Klumperman B, 2011, Self-healing stretchable, and conductive dry adhesives based on 1D–
materials based on disulfide links. Macromolecules, 44(8): 2D hybrid carbon nanocomposites for all-in-one ECG
2536–2541. electrodes. ACS Nano, 10(4): 4770–4778.
http://doi.org/10.1021/ma2001492 http://doi.org/10.1021/acsnano.6b01355
Volume 9 Issue 5 (2023) 353 https://doi.org/10.18063/ijb.765

