Page 361 - IJB-9-5
P. 361

International Journal of Bioprinting                            3D printing of tough and self-healing hydrogels



            22.  Song PA, Xu Z, Guo Q, 2013, Bioinspired strategy to reinforce   33.  Sun TL, Luo F, Hong W, et al., 2017, Bulk energy dissipation
               PVA with improved toughness and thermal properties   mechanism for the fracture of tough and self-healing
               via hydrogen-bond self-assembly.  ACS Macro Lett, 2(12):   hydrogels. Macromolecules, 50(7): 2923–2931.
               1100–1104.
                                                                  http://doi.org/10.1021/acs.macromol.7b00162
               http://doi.org/10.1021/mz4005265
                                                               34.  Zhou  J,  Vijayavenkataraman  S,  2021, 3D-printable
            23.  George J, Sabapathi SN, Siddaramaiah, 2015, Water soluble   conductive materials for tissue engineering and biomedical
               polymer-based nanocomposites containing  cellulose   applications. Bioprinting, 24: e00166.
               nanocrystals, in  Eco-friendly Polymer Nanocomposites:
               Processing and Properties, Thakur VK, Thakur MK (Eds),   https://doi.org/10.1016/j.bprint.2021.e00166
               Springer India, New Delhi, 259–293.             35.  Smith PT, Basu A, Saha A, et al., 2018, Chemical modification
            24.  Meng Y, Cao J, Chen Y, et al., 2020, 3D printing of a poly(vinyl   and printability of shear-thinning hydrogel inks for direct-
               alcohol)-based nano-composite hydrogel as an artificial   write 3D printing. Polymer, 152: 42–50.
               cartilage replacement and the improvement mechanism of   https://doi.org/10.1016/j.polymer.2018.01.070
               printing accuracy. J Mater Chem B, 8(4): 677–690.
                                                               36.  Zhou J, Yan H, Wang C,  et al., 2022, 3D printing highly
               http://doi.org/10.1039/C9TB02278C                  stretchable conductors for flexible electronics with low
            25.  Chen W, Li N, Ma Y, et al., 2019, Superstrong and tough   signal hysteresis. Virtual Phys Prototyp, 17(1): 19–32.
               hydrogel through physical cross-linking and molecular   http://doi.org/10.1080/17452759.2021.1980283
               alignment. Biomacromolecules, 20(12): 4476–4484.
                                                               37.  Karolina Pierchala M, Kadumudi FB, Mehrali M, et al., 2021,
               http://doi.org/10.1021/acs.biomac.9b01223          Soft electronic materials with combinatorial properties
            26.  Fan H, Wang J, Jin Z, 2018, Tough, swelling-resistant,   generated via mussel-inspired chemistry and halloysite
               self-healing, and adhesive dual-cross-linked hydrogels   nanotube reinforcement. ACS Nano, 15(6): 9531–9549.
               based on polymer–tannic acid multiple hydrogen bonds.   http://doi.org/10.1021/acsnano.0c09204
               Macromolecules, 51(5): 1696–1705.
                                                               38.  Liu X, Liu J, Lin S, et al., 2020, Hydrogel machines. Mater
               http://doi.org/10.1021/acs.macromol.7b02653
                                                                  Today, 36: 102–124.
            27.  Jafari  H,  Ghaffari-Bohlouli  P,  Niknezhad  SV,  et al.,  2022,   https://doi.org/10.1016/j.mattod.2019.12.026
               Tannic acid: A versatile polyphenol for design of biomedical
               hydrogels. J Mater Chem B, 10(31): 5873–5912.   39.  Lu Y, Biswas MC, Guo Z, et al., 2019, Recent developments
                                                                  in bio-monitoring via advanced polymer nanocomposite-
               http://doi.org/10.1039/D2TB01056A
                                                                  based wearable strain sensors.  Biosens Bioelectron, 123:
            28.  Shi S, Peng X, Liu T,  et al., 2017, Facile preparation of   167–177.
               hydrogen-bonded supramolecular polyvinyl alcohol-
               glycerol gels with excellent thermoplasticity and mechanical   https://doi.org/10.1016/j.bios.2018.08.037
               properties. Polymer, 111: 168–176.              40.  Dannert C, Stokke BT, Dias RS, 2019, Nanoparticle-hydrogel
            29.  Kang J, Son D, Wang G-JN, et al., 2018, Tough and water-  composites: From  molecular interactions  to macroscopic
               insensitive self-healing elastomer for robust electronic skin.   behavior. Polymers, 11(2): 275.
               Adv Mater, 30(13): 1706846.                        http://doi.org/ 10.3390/polym11020275
               https://doi.org/10.1002/adma.201706846          41.  Sawicki K, Czajka M, Matysiak-Kucharek M,  et al., 2019,
            30.  Liu T, Jiao C, Peng X, et al., 2018, Super-strong and tough   Toxicity of metallic nanoparticles in the central nervous
               poly(vinyl alcohol)/poly(acrylic acid) hydrogels reinforced   system. Nanotechnol Rev, 8(1): 175–200.
               by hydrogen bonding. J Mater Chem B, 6(48): 8105–8114.  http://doi.org/doi:10.1515/ntrev-2019-0017
               http://doi.org/10.1039/C8TB02556H               42.  Zheng W, Li Y, Xu L, et al., 2020, Highly stretchable, healable,
            31.  Qin H, Zhang T, Li N,  et al., 2019, Anisotropic and self-  sensitive double-network conductive hydrogel for wearable
               healing hydrogels with multi-responsive actuating capability.   sensor. Polymer, 211: 123095.
               Nat Commun, 10(1): 2202.                           https://doi.org/10.1016/j.polymer.2020.123095
               http://doi.org/10.1038/s41467-019-10243-8       43.  Kim T, Park J, Sohn J,  et al., 2016, Bioinspired, highly
            32.  Canadell J, Goossens H, Klumperman B, 2011, Self-healing   stretchable,  and  conductive  dry  adhesives  based on  1D–
               materials based on disulfide links.  Macromolecules, 44(8):   2D  hybrid  carbon  nanocomposites  for  all-in-one  ECG
               2536–2541.                                         electrodes. ACS Nano, 10(4): 4770–4778.
               http://doi.org/10.1021/ma2001492                   http://doi.org/10.1021/acsnano.6b01355



            Volume 9 Issue 5 (2023)                        353                         https://doi.org/10.18063/ijb.765
   356   357   358   359   360   361   362   363   364   365   366