Page 425 - IJB-9-5
P. 425

International Journal of Bioprinting                         3D-printed Mg scaffolds promote bone defect repair



               PLGA/nano-MgO-alginate core-shell microsphere device to   29.  Reid DM, Devogelaer JP, Saag K, et al., 2009, Zoledronic
               enable in-situ bone regeneration. Biomaterials, 174: 1–16.  acid and risedronate in the prevention and treatment of
                                                                  glucocorticoid-induced osteoporosis (HORIZON): A
               https://doi.org/10.1016/j.biomaterials.2018.05.011
                                                                  multicentre, double-blind, double-dummy, randomised
            24.  Zhai Z, Qu X, Li H, et al., 2014, The effect of metallic   controlled trial. Lancet, 373(9671): 1253–1263.
               magnesium degradation products on osteoclast-induced
               osteolysis and attenuation of NF-kappaB and NFATc1   https://doi.org/10.1016/S0140-6736(09)60250-6
               signaling. Biomaterials, 35(24): 6299–6310.     30.  Greiner S, Kadow-Romacker A, Schmidmaier G, et al., 2009,
                                                                  Cocultures of osteoblasts and osteoclasts are influenced
               https://doi.org/10.1016/j.biomaterials.2014.04.044
                                                                  by local application of zoledronic acid incorporated in a
            25.  Wong HM, Wu SL, Chu PK, et al., 2013, Low-modulus   poly(D,L-lactide) implant coating.  J Biomed Mater Res A,
               Mg/PCL hybrid bone substitute for osteoporotic fracture   91(1): 288–295.
               fixation. Biomaterials, 34(29): 7016–7032.
                                                                  https://doi.org/10.1002/jbm.a.32245
               https://doi.org/10.1016/j.biomaterials.2013.05.062
                                                               31.  Razavi M, Fathi M, Savabi O,  et  al., 2014, In vivo study
            26.  Lin SH, Yang GZ, Jiang F, et al., 2019, A magnesium-enriched   of nanostructured diopside (CaMgSi2O6) coating on
               3D culture system that mimics the bone development   magnesium  alloy  as  biodegradable  orthopedic  implants.
               microenvironment for vascularized bone regeneration. Adv   Appl Surf Sci, 313: 60–66.
               Sci, 6(12): 1900209.
                                                                  https://doi.org/10.1016/j.apsusc.2014.05.130
               https://doi.org/10.1002/advs.201900209
                                                               32.  Yang M, Dong Y, He Q, et al., 2020, Hydrogen: A novel
            27.  Cipriano  AF,  Lin  JJ,  Lin  A,  et  al.,  2017,  Degradation  of   option in human disease treatment. Oxid Med Cell Longev,
               bioresorbable Mg-4Zn-1Sr intramedullary pins and   2020: 8384742.
               associated biological responses in vitro and in vivo.  ACS   https://doi.org/10.1155/2020/8384742
               Appl Mater Interfaces, 9(51): 44332–44355.
                                                               33.  Ohta  S,  2014,  Molecular  hydrogen  as  a  preventive and
               https://doi.org/10.1021/acsami.7b15975
                                                                  therapeutic medical gas: Initiation, development and potential
            28.  Zhang  YL,  Shi  LT,  Tang  PF, et al.,  2017,  Comparison  of   of hydrogen medicine. Pharmacol Therapeut, 144(1): 1–11.
               the efficacy between two micro-operative therapies of old
               patients with osteoporotic vertebral compression fracture: A   https://doi.org/10.1016/j.pharmthera.2014.04.006
               network meta-analysis. J Cell Biochem, 118(10): 3205–3212.
               https://doi.org/10.1002/jcb.25966





































            Volume 9 Issue 5 (2023)                        417                         https://doi.org/10.18063/ijb.769
   420   421   422   423   424   425   426   427   428   429   430