Page 424 - IJB-9-5
P. 424

International Journal of Bioprinting                         3D-printed Mg scaffolds promote bone defect repair



            2.   Reid IR, 2020, A broader strategy for osteoporosis   13.  Xie K, Wang NQ, Guo Y, et al., 2022, Additively manufactured
               interventions. Nat Rev Endocrinol, 16(6): 333–339.  biodegradable porous magnesium implants for elimination
                                                                  of implant-related infections: An in vitro and in vivo study.
               https://doi.org/10.1038/s41574-020-0339-7
                                                                  Bioact Mater, 8: 140–152.
            3.   Myeroff C, Archdeacon M, 2011, Autogenous bone graft:   https://doi.org/10.1016/j.bioactmat.2021.06.032
               Donor sites and techniques. J Bone Joint Surg Am, 93(23):
               2227–2236.                                      14.  Rossi S, Deflorian F, Fedel M, 2019, Polysilazane-
                                                                  based coatings: Corrosion protection and anti-graffiti
               https://doi.org/10.2106/JBJS.J.01513               properties(dagger). Surf Eng, 35(4): 343–350.
            4.   Sukotjo C, Lima-Neto TJ, Santiago Junior JF, et al., 2020, Is   https://doi.org/10.1080/02670844.2018.1465748
               there a role for absorbable metals in surgery? A systematic
               review and meta-analysis of Mg/Mg alloy based implants.   15.  Reid IR, Billington EO, 2022, Drug therapy for osteoporosis
               Materials (Basel), 13(18): 3914.                   in older adults. Lancet, 399(10329): 1080–1092.
               https://doi.org/10.3390/ma13183914                 https://doi.org/10.1016/S0140-6736(21)02646-5
            5.   John AA, Xie J, Yang YS, et al., 2022, AAV-mediated delivery   16.  Johnston CB, Dagar M, 2020, Osteoporosis in older adults.
               of osteoblast/osteoclast-regulating miRNAs for osteoporosis   Med Clin North Am, 104(5): 873–884.
               therapy. Mol Ther Nucleic Acids, 29: 296–311.      https://doi.org/10.1016/j.mcna.2020.06.004
               https://doi.org/10.1016/j.omtn.2022.07.008      17.  Black DM, Delmas PD, Eastell R, et al., 2007, Once-
                                                                  yearly zoledronic acid for treatment of postmenopausal
            6.   Kraus T, Fischerauer SF, Hanzi AC, et al., 2012, Magnesium   osteoporosis. N Engl J Med, 356(18): 1809–1822.
               alloys for temporary implants in osteosynthesis: In vivo
               studies of their degradation and interaction with bone. Acta   https://doi.org/10.1056/NEJMoa067312
               Biomater, 8(3): 1230–1238.                      18.  Li GY, Zhang L, Wang L, et al., 2018, Dual modulation
               https://doi.org/10.1016/j.actbio.2011.11.008       of bone formation and resorption with zoledronic acid-
                                                                  loaded biodegradable magnesium alloy implants improves
            7.   Min S, Wang C, Liu B, et al., 2023, The biological properties   osteoporotic fracture healing: An in vitro and in vivo study.
               of  3D-printed degradable  magnesium  alloy  WE43  porous   Acta Biomater, 65: 486–500.
               scaffolds via the oxidative heat strategy. Int J Bioprint, 9(3):
               94–104.                                            https://doi.org/10.1016/j.actbio.2017.10.033
               https://doi.org/10.18063/ijb.686                19.  Liu A, Lin D, Zhao H, et al., 2021, Optimized BMSC-derived
                                                                  osteoinductive exosomes  immobilized in  hierarchical
            8.   Chaya A, Yoshizawa S, Verdelis K,  et  al., 2015, In vivo   scaffold via lyophilization for bone repair through Bmpr2/
               study of magnesium plate and screw degradation and bone   Acvr2b competitive receptor-activated Smad pathway.
               fracture healing. Acta Biomater, 18: 262–269.      Biomaterials, 272: 120718.
               https://doi.org/10.1016/j.actbio.2015.02.010       https://doi.org/10.1016/j.biomaterials.2021.120718
            9.   Li Y, Zhou J, Pavanram P, et al., 2018, Additively   20.  Yuan  K, Mei  J, Shao  D, et al., 2020,  Cerium  oxide
               manufactured biodegradable porous magnesium.  Acta   nanoparticles  regulate  osteoclast  differentiation
               Biomater, 67: 378–392.                             bidirectionally by modulating the cellular production of
                                                                  reactive oxygen species. Int J Nanomed, 15: 6355–6372.
               https://doi.org/10.1016/j.actbio.2017.12.008
                                                                  https://doi.org/10.2147/IJN.S257741
            10.  Dong J, Li Y, Lin P, et al., 2020, Solvent-cast 3D printing of
               magnesium scaffolds. Acta Biomater, 114: 497–514.  21.  Chen QX, Li JY, Han F, et al., 2022, A multifunctional
                                                                  composite hydrogel that rescues the ROS microenvironment
               https://doi.org/10.1016/j.actbio.2020.08.002       and guides the immune response for repair of osteoporotic
            11.  Al-Ketan O, Rowshan R, Abu Al-Rub RK, 2018, Topology-  bone defects. Adv Func Mater, 32(27): 2201067.
               mechanical property relationship of 3D printed strut,   https://doi.org/10.1002/adfm.202201067
               skeletal, and sheet based periodic metallic cellular materials.
               Addit Manuf, 19: 167–183.                       22.  Niu J, Yuan G, Liao Y, et al., 2013, Enhanced biocorrosion
                                                                  resistance and biocompatibility of degradable Mg-Nd-Zn-
               https://doi.org/10.1016/j.addma.2017.12.006        Zr  alloy by  brushite coating.  Mater Sci Eng C Mater Biol
            12.  Zhang XY, Fang G, Zhou J, 2017, Additively manufactured   Appl, 33(8): 4833–4841.
               scaffolds for bone tissue engineering and the prediction of   https://doi.org/10.1016/j.msec.2013.08.008
               their mechanical behavior: A review. Materials, 10(1): 50.
                                                               23.  Lin ZJ, Wu J, Qiao W, et al., 2018, Precisely controlled
               https://doi.org/10.3390/ma10010050                 delivery of magnesium ions thru sponge-like monodisperse


            Volume 9 Issue 5 (2023)                        416                         https://doi.org/10.18063/ijb.769
   419   420   421   422   423   424   425   426   427   428   429