Page 465 - IJB-9-5
P. 465
International Journal of Bioprinting 3D-printed oblique lumbar interbody cage
2. Zeng ZY, Xu ZW, He DW, et al., 2018, Complications and 15. Guo HZ, Tang YC, Guo DQ, et al., 2020, Stability evaluation
prevention strategies of oblique lateral interbody fusion of oblique lumbar interbody fusion constructs with various
technique. Orthop Surg, 10(2): 98–106. fixation options: A finite element analysis based on three-
dimensional scanning models. World Neurosurg, 138: e530–
3. He W, He D, Sun Y, et al., 2020, Standalone oblique lateral e538.
interbody fusion vs. combined with percutaneous pedicle
screw in spondylolisthesis. BMC Musculoskelet Disord, 16. Huang SF, Chang CM, Liao CY, et al., 2022, Biomechanical
21(1): 1–9. evaluation of an osteoporotic anatomical 3D printing
posterior lumbar interbody fusion cage with internal lattice
4. Choi YH, Kwon SW, Moon JH, et al., 2017, Lateral lumbar
interbody fusion and in situ screw fixation for rostral design based on weighted topology optimization. Int J
Bioprint, 9(3): 410–421.
adjacent segment stenosis of the lumbar spine. J Korean
Neurosurg Soc, 60(6): 755. 17. Chazal J, Tanguy A, Bourges M, et al., 1985, Biomechanical
properties of spinal ligaments and a histological study of the
5. Xie T, Wang C, Yang Z, et al., 2020, Minimally invasive supraspinal ligament in traction. J Biomech, 18(3): 167–176.
oblique lateral lumbar interbody fusion combined with
anterolateral screw fixation for lumbar degenerative disc 18. Zhong ZC, Wei SH, Wang JP, et al., 2006, Finite element
disease. World Neurosurg, 135: e671–e678. analysis of the lumbar spine with a new cage using a topology
optimization method. Med Eng Phys, 28(1): 90–98.
6. Hu Z, He D, Gao J, et al., 2021, The influence of endplate
morphology on cage subsidence in patients with stand-alone 19. Yamamoto ISAO, Panjabi MM, Crisco TREY, et al., 1989,
oblique lateral lumbar interbody fusion (OLIF). Global Spine Three dimensional movements of the whole lumbar spine
J, 13(1): 97–103. and lumbosacral joint. Spine, 14(11): 1256–1260.
7. Siu TL, Rogers JM, Lin K, et al., 2018, Custom-made 20. Schmoelz W, Huber JF, Nydegger T, et al., 2003, Dynamic
titanium 3-dimensional printed interbody cages for stabilization of the lumbar spine and its effects on adjacent
treatment of osteoporotic fracture–related spinal deformity. segments: an in vitro experiment. Clin Spine Surg, 16(4):
World Neurosurg, 111: 1–5. 418–423.
8. Huiskes R, Ruimerman R, Van Lenthe GH, et al., 2000, 21. Chen SH, Tai CL, Lin CY, et al., 2008, Biomechanical
Effects of mechanical forces on maintenance and adaptation comparison of a new stand-alone anterior lumbar interbody
of form in trabecular bone. Nature, 405(6787): 704–706. fusion cage with established fixation techniques – a three-
dimensional finite element analysis. BMC Musculoskelet
9. Tartara F, Bongetta D, Pilloni G, et al. 2020, Custom-
made trabecular titanium implants for the treatment of Disord, 9(1): 1–10.
lumbar degenerative discopathy via ALIF/XLIF techniques: 22. Liao CY, Chien CL, Pu TW, et al., 2022, Assessment of
rationale for use and preliminary results. Eur Spine J, 29(2): lumbar vertebrae morphology by computed tomography in
314–320. older adults with osteoporosis. Curr Med Imaging, 18(11):
1195–1203.
10. Taniguchi N, Fujibayashi S, Takemoto M, et al., 2016,
Effect of pore size on bone ingrowth into porous titanium 23. Cobian D, Heiderscheit B, Daehn N, et al., 2011, Comparison
implants fabricated by additive manufacturing: An in vivo of daily motion of the cervical and lumbar spine to ASTM
experiment. Mater Sci Eng C, 59: 690–701. F2423-11 and ISO 18192-1.2011 standard testing. J ASTM
Int, 9(1): 1–10.
11. Li F, Li J, Xu G, et al., 2015, Fabrication, pore structure and
compressive behavior of anisotropic porous titanium for 24. Li CH, Wu CH, Lin CL, 2020, Design of a patient-specific
human trabecular bone implant applications. J Mech Behav mandible reconstruction implant with dental prosthesis
Biomed Mater, 46: 104–114. for metal 3D printing using integrated weighted topology
optimization and finite element analysis. J Mech Behav
12. Chang B, Song W, Han T, et al., 2016, Influence of pore size Biomed Mater, 105: 103700.
of porous titanium fabricated by vacuum diffusion bonding
of titanium meshes on cell penetration and bone ingrowth. 25. Taniguchi N, Fujibayashi S, Takemoto M, et al., 2016, Effect
Acta Biomater, 33: 311–321. of pore size on bone ingrowth into porous titanium implants
fabricated by additive manufacturing: an in vivo experiment.
13. Zhang Z, Fogel GR, Liao Z, et al., 2018, Biomechanical Mater Sci Eng C, 59: 690–701.
analysis of lumbar interbody fusion cages with various
lordotic angles: A finite element study. Comput Methods 26. Implants for surgery — Preclinical mechanical assessment of
Biomech Biomed Eng, 21(3): 247–254. spinal implants and particular requirements —Part 2: Spinal
intervertebral body fusion devices. ISO 23089–2:2021.
14. Xiao Z, Wang L, Gong H, et al., 2011, A non-linear finite
element model of human L4-L5 lumbar spinal segment with 27. Yang J, Cai H, Lv J, et al., 2014, In vivo study of a self-
three-dimensional solid element ligaments. Theor App Mech stabilizing artificial vertebral body fabricated by electron
Lett, 1(6): 064001. beam melting. Spine, 39(8): e486–e492.
Volume 9 Issue 5 (2023) 457 https://doi.org/10.18063/ijb.772

