Page 465 - IJB-9-5
P. 465

International Journal of Bioprinting                             3D-printed oblique lumbar interbody cage



            2.   Zeng ZY, Xu ZW, He DW, et al., 2018, Complications and   15.  Guo HZ, Tang YC, Guo DQ, et al., 2020, Stability evaluation
               prevention strategies of oblique lateral interbody fusion   of oblique lumbar interbody fusion constructs with various
               technique. Orthop Surg, 10(2): 98–106.             fixation options: A finite element analysis based on three-
                                                                  dimensional scanning models. World Neurosurg, 138: e530–
            3.   He W, He D, Sun Y, et al., 2020, Standalone oblique lateral   e538.
               interbody fusion vs. combined with percutaneous pedicle
               screw in spondylolisthesis.  BMC Musculoskelet Disord,   16.  Huang SF, Chang CM, Liao CY, et al., 2022, Biomechanical
               21(1): 1–9.                                        evaluation of an  osteoporotic  anatomical  3D  printing
                                                                  posterior lumbar interbody fusion cage with internal lattice
            4.   Choi YH, Kwon SW, Moon JH, et al., 2017, Lateral lumbar
               interbody fusion and in situ screw fixation for rostral   design  based  on  weighted  topology  optimization.  Int J
                                                                  Bioprint, 9(3): 410–421.
               adjacent segment stenosis of the lumbar spine.  J Korean
               Neurosurg Soc, 60(6): 755.                      17.  Chazal J, Tanguy A, Bourges M, et al., 1985, Biomechanical
                                                                  properties of spinal ligaments and a histological study of the
            5.   Xie  T,  Wang  C, Yang  Z,  et al.,  2020,  Minimally  invasive   supraspinal ligament in traction. J Biomech, 18(3): 167–176.
               oblique  lateral lumbar  interbody  fusion  combined with
               anterolateral screw fixation for lumbar degenerative disc   18.  Zhong ZC, Wei SH, Wang JP,  et al., 2006, Finite element
               disease. World Neurosurg, 135: e671–e678.          analysis of the lumbar spine with a new cage using a topology
                                                                  optimization method. Med Eng Phys, 28(1): 90–98.
            6.   Hu Z, He D, Gao J, et al., 2021, The influence of endplate
               morphology on cage subsidence in patients with stand-alone   19.  Yamamoto ISAO, Panjabi MM, Crisco TREY, et al., 1989,
               oblique lateral lumbar interbody fusion (OLIF). Global Spine   Three dimensional movements of the whole lumbar spine
               J, 13(1): 97–103.                                  and lumbosacral joint. Spine, 14(11): 1256–1260.
            7.   Siu TL, Rogers JM, Lin K,  et al., 2018, Custom-made   20.  Schmoelz W, Huber JF, Nydegger T, et al., 2003, Dynamic
               titanium 3-dimensional printed interbody cages for   stabilization of the lumbar spine and its effects on adjacent
               treatment of osteoporotic fracture–related spinal deformity.   segments: an in vitro experiment.  Clin Spine Surg, 16(4):
               World Neurosurg, 111: 1–5.                         418–423.
            8.   Huiskes  R, Ruimerman R, Van Lenthe GH,  et  al., 2000,   21.  Chen SH, Tai CL, Lin CY,  et al., 2008, Biomechanical
               Effects of mechanical forces on maintenance and adaptation   comparison of a new stand-alone anterior lumbar interbody
               of form in trabecular bone. Nature, 405(6787): 704–706.  fusion cage with established fixation techniques – a three-
                                                                  dimensional finite element analysis.  BMC Musculoskelet
            9.   Tartara  F,  Bongetta  D,  Pilloni  G,  et al.  2020,  Custom-
               made trabecular titanium implants for the treatment of   Disord, 9(1): 1–10.
               lumbar degenerative discopathy via ALIF/XLIF techniques:   22.  Liao CY, Chien CL, Pu TW,  et al., 2022, Assessment of
               rationale for use and preliminary results. Eur Spine J, 29(2):   lumbar vertebrae morphology by computed tomography in
               314–320.                                           older adults with osteoporosis. Curr Med Imaging, 18(11):
                                                                  1195–1203.
            10.  Taniguchi N, Fujibayashi S, Takemoto M,  et al., 2016,
               Effect of pore size on bone ingrowth into porous titanium   23.  Cobian D, Heiderscheit B, Daehn N, et al., 2011, Comparison
               implants fabricated by additive manufacturing: An in vivo   of daily motion of the cervical and lumbar spine to ASTM
               experiment. Mater Sci Eng C, 59: 690–701.          F2423-11 and ISO 18192-1.2011 standard testing. J ASTM
                                                                  Int, 9(1): 1–10.
            11.  Li F, Li J, Xu G, et al., 2015, Fabrication, pore structure and
               compressive  behavior  of  anisotropic  porous  titanium  for   24.  Li CH, Wu CH, Lin CL, 2020, Design of a patient-specific
               human trabecular bone implant applications. J Mech Behav   mandible reconstruction implant with dental prosthesis
               Biomed Mater, 46: 104–114.                         for metal 3D printing using integrated weighted topology
                                                                  optimization  and finite  element  analysis.  J Mech Behav
            12.  Chang B, Song W, Han T, et al., 2016, Influence of pore size   Biomed Mater, 105: 103700.
               of porous titanium fabricated by vacuum diffusion bonding
               of titanium meshes on cell penetration and bone ingrowth.   25.  Taniguchi N, Fujibayashi S, Takemoto M, et al., 2016, Effect
               Acta Biomater, 33: 311–321.                        of pore size on bone ingrowth into porous titanium implants
                                                                  fabricated by additive manufacturing: an in vivo experiment.
            13.  Zhang Z, Fogel GR, Liao Z,  et al., 2018, Biomechanical   Mater Sci Eng C, 59: 690–701.
               analysis  of  lumbar  interbody  fusion  cages  with  various
               lordotic angles: A finite element study.  Comput Methods   26.  Implants for surgery — Preclinical mechanical assessment of
               Biomech Biomed Eng, 21(3): 247–254.                spinal implants and particular requirements —Part 2: Spinal
                                                                  intervertebral body fusion devices. ISO 23089–2:2021.
            14.  Xiao Z, Wang L, Gong H, et al., 2011, A non-linear finite
               element model of human L4-L5 lumbar spinal segment with   27.  Yang J, Cai H, Lv J,  et al., 2014, In vivo study of a self-
               three-dimensional solid element ligaments. Theor App Mech   stabilizing artificial vertebral body fabricated by electron
               Lett, 1(6): 064001.                                beam melting. Spine, 39(8): e486–e492.


            Volume 9 Issue 5 (2023)                        457                         https://doi.org/10.18063/ijb.772
   460   461   462   463   464   465   466   467   468   469   470