Page 516 - IJB-9-5
P. 516

International Journal of Bioprinting                             Implantation of composites for cartilage repair



            21.  Galarraga JH, Locke RC, Witherel CE,  et al., 2022,   31.  Erickson IE, Kestle SR, Zellars KH, et al., 2012, Improved
               Fabrication of MSC-laden composites of hyaluronic acid   cartilage repair via in vitro pre-maturation of MSC-seeded
               hydrogels reinforced with MEW scaffolds for cartilage   hyaluronic acid hydrogels. Biomed Mater, 7(2): 024110.
               repair. Biofabrication, 14(1): 014106.
                                                                  https://doi.org/10.1088/1748-6041/7/2/024110
               https://doi.org/10.1088/1758-5090/ac3acb
                                                               32.  Mainil-Varlet P, Van Damme B, Nesic D, et al., 2010, A new
            22.  Castilho M, Hochleitner G, Wilson W, et al., 2018, Mechanical   histology scoring system for the assessment of the quality
               behavior of a soft hydrogel reinforced with three-dimensional   of human cartilage repair: ICRS II. Am J Sports Med, 38(5):
               printed microfibre scaffolds. Sci Rep, 8(1): 1245.  880–890.

               https://doi.org/10.1038/s41598-018-19502-y         https://doi.org/10.1177/0363546509359068
            23.  Galarraga JH, Kwon MY, Burdick JA, 2019, 3D bioprinting   33.  Stoeckl BD, Zlotnick HM, Farrell MJ,  et al., 2021, The
               via  an  in  situ  crosslinking  technique  towards  engineering   porcine accessory carpal bone as a model for biologic joint
               cartilage tissue. Sci Rep, 9(1): 19987.            replacement for trapeziometacarpal osteoarthritis.  Acta
                                                                  Biomater, 129: 159–168.
               https://doi.org/10.1038/s41598-019-56117-3
                                                                  https://doi.org/10.1016/j.actbio.2021.05.011
            24.  Kim M, Erickson IE, Choudhury M, et al., 2012, Transient
               exposure to TGF-β3 improves the functional chondrogenesis   34.  Patel JM, Wise BC, Bonnevie ED, et al., 2019, A systematic
               of MSC-laden hyaluronic acid hydrogels.  J  Mech  Behav   review and guide to mechanical testing for articular cartilage
               Biomed Mater, 11: 92–101.                          tissue engineering. Tissue Eng Part C Methods, 25(10): 593–608.
               https://doi.org/10.1016/j.jmbbm.2012.03.006        https://doi.org/10.1089/ten.tec.2019.0116
            25.  Kwon MY, Vega SL, Gramlich WM, et al., 2018, Dose and   35.  Moore AC, DeLucca JF, Elliott DM, et al., 2016, Quantifying
               timing of N-cadherin mimetic peptides regulate MSC   cartilage contact modulus, tension modulus, and permeability
               chondrogenesis within hydrogels. Adv Healthc Mater, 7(9):   with hertzian biphasic creep. J Tribol, 138(4): 1–7.
               1701199.                                           https://doi.org/10.1115/1.4032917
               https://doi.org/10.1002/adhm.201701199          36.  Fisher  MB,  Belkin  NS,  Milby  AH,  et  al.,  2016, Effects of
                                                                  mesenchymal stem cell and growth factor delivery on cartilage
            26.  Zlotnick HM, Locke RC, Stoeckl BD, et al., 2021, Marked
               differences in local bone remodelling in response to different   repair in a mini-pig model. Cartilage, 7(2): 174–184.
               marrow stimulation techniques in a large animal. Eur Cell   https://doi.org/10.1177/1947603515623030
               Mater, 41: 546–557.
                                                               37.  Galarraga JH, Dhand AP, Enzmann BP,  et al., 2023,
               https://doi.org/10.22203/eCM.v041a35               Synthesis, characterization, and digital light processing
                                                                  of a hydrolytically degradable hyaluronic acid hydrogel.
            27.  Fisher MB, Belkin NS, Milby AH,  et al., 2015, Cartilage   Biomacromolecules, 24(1): 413–425.
               repair and subchondral bone remodeling in response to
               focal lesions in a mini-pig model: Implications for tissue   https://doi.org/10.1021/acs.biomac.2c01218
               engineering. Tissue Eng Part A, 21(3–4): 850–860.  38.  Qayed M, Copland I, Galipeau J, 2017,  Allogeneic Versus
               https://doi.org/10.1089/ten.tea.2014.0384          Autologous Mesenchymal Stromal Cells and Donor-To-Donor
                                                                  Variability. Elsevier Inc, Amsterdam.
            28.  Collins D, Simons B, 2020, Significantly delayed polyglactin
               910 suture-related pseudoinfection in a yucatan pig. BMC   https://doi.org/10.1016/b978-0-12-802826-1.00004-0
               Vet Res, 16(1): 1–7.                            39.  Pfeifer CG, Fisher MB, Saxena V, et al., 2017, Age-dependent
               https://doi.org/10.1186/s12917-020-02662-3         subchondral bone remodeling and cartilage repair in a
                                                                  minipig defect model. Tissue Eng Part C Methods, 23(11):
            29.  Smith G, Taylor J, Almqvist KF, et al., 2005, Arthroscopic   745–753.
               assessment of  cartilage  repair:  A validation  study  of  2
               scoring systems. Arthroscopy, 21(12): 1462–1467.   https://doi.org/10.1089/ten.tec.2017.0109
               https://doi.org/10.1016/j.arthro.2005.09.007    40.  Brittberg M, Winalski CS, 2003, Evaluation of cartilage
                                                                  injuries and repair. J Bone Joint Surg Series A, 85(2): 58–69.
            30.  Goebel L, Orth P, Müller A,  et  al., 2012, Experimental
               scoring systems for macroscopic articular cartilage repair   https://doi.org/10.2106/00004623-200300002-00008
               correlate with the MOCART score assessed by a high-field   41.  Mithoefer K, Mcadams T, Williams RJ, et al., 2009, Clinical
               MRI at 9.4 T - comparative evaluation of five macroscopic   efficacy of the microfracture technique for articular cartilage
               scoring systems in a large animal cartilage defect model.   repair in the knee: An evidence-based systematic analysis.
               Osteoarthr Cartil, 20(9): 1046–1055.               Am J Sports Med, 37(10): 2053–2063.
               https://doi.org/10.1016/j.joca.2012.05.010         https://doi.org/10.1177/0363546508328414


            Volume 9 Issue 5 (2023)                        508                         https://doi.org/10.18063/ijb.775
   511   512   513   514   515   516   517   518   519   520   521