Page 517 - IJB-9-5
P. 517
International Journal of Bioprinting Implantation of composites for cartilage repair
42. Donell S, 2019, Subchondral bone remodelling in 47. Nam S, Mooney D, 2021, Polymeric tissue adhesives. Chem
osteoarthritis. EFORT Open Rev, 4(6): 221–229. Rev, 121(18): 11336–11384.
https://doi.org/10.1302/2058-5241.4.180102 https://doi.org/10.1021/acs.chemrev.0c00798
43. de Ruijter M, Diloksumpan P, Dokter I, et al., 2022, Pivotal 48. Kim M, Steinberg DR, Burdick JA, et al., 2019, Extracellular
importance of reinforcement of cartilage implants confirmed vesicles mediate improved functional outcomes in
in challenging large animal model; presence of transplanted engineered cartilage produced from MSC/chondrocyte
cells probably secondary, in Tissue Engineering Part A, Mary cocultures. Proc Natl Acad Sci USA, 116(5): 1569–1578.
Ann Liebert, Inc., USA, S289–S290.
https://doi.org/10.1073/pnas.1815447116
44. Mansour JM, 2009, Biomechanics of Cartilage. In: Lupash 49. Vega SL, Kwon MY, Song KH, et al., 2018, Combinatorial
EJ, Klingler AM, Glover SA, eds. Kinesiology: The Mechanics hydrogels with biochemical gradients for screening 3D
and Pathomechanics of Human Movement. Second. cellular microenvironments. Nat Commun, 9: 614.
Lippincott Williams & Wilkins, Philadelphia, 69–81.
https://doi.org/10.1038/s41467-018-03021-5
45. Huang CY, Mow VC, Ateshian GA, 2001, The role of flow-
independent viscoelasticity in the biphasic tensile and 50. Patel JM, Saleh KS, Burdick JA, et al., 2019, Bioactive factors
compressive responses of articular cartilage. J Biomech Eng, for cartilage repair and regeneration: Improving delivery,
123(5): 410–417. retention, and activity. Acta Biomater, 93: 222–238.
https://doi.org/10.1115/1.1392316 https://doi.org/10.1016/j.actbio.2019.01.061
46. Zhang X, Jiang Y, Han L, et al., 2021, Biodegradable polymer
hydrogel-based tissue adhesives: A review. Biosurf Biotribol,
7(4): 163–179.
https://doi.org/10.1049/bsb2.12016
Volume 9 Issue 5 (2023) 509 https://doi.org/10.18063/ijb.775

