Page 74 - IJB-9-5
P. 74

International Journal of Bioprinting                        3D-printed PLA-BG composite induces angiogenesis



            37.  Wu Z, He D, Li H, 2021, Bioglass enhances the production   48.  Mangir N, Dikici S, Claeyssens F,  et al., 2019, Using ex
               of  exosomes  and  improves  their  capability  of  promoting   ovo chick chorioallantoic membrane (CAM) assay to
               vascularization. Bioact Mater, 6(3):823–835.       evaluate the biocompatibility and angiogenic response to
                                                                  biomaterials. ACS Biomater Sci Eng, 5(7):3190–3200.
               https://doi.org/10.1016/j.bioactmat.2020.09.011
                                                                  https://doi.org/10.1021/acsbiomaterials.9b00172
            38.  El-Gendy R, Kirkham J, Newby PJ, et al., 2015, Investigating
               the vascularization of tissue-engineered bone constructs   49.  Baiguera S, Macchiarini P, Ribatti D, 2012, Chorioallantoic
               using dental pulp cells and 45S5 bioglass(R) scaffolds. Tissue   membrane for in vivo investigation of tissue-engineered
               Eng Part A, 21(13–14):2034–2043.                   construct biocompatibility.  J Biomed Mater Res B Appl
                                                                  Biomater, 100(5):1425–1434.
               https://doi.org/10.1089/ten.tea.2014.0485
                                                                  https://doi.org/10.1002/jbm.b.32653
            39.  El-Gendy R, Yang XB, Newby PJ, et al., 2013, Osteogenic   50.  Brezulier  D,  Chaigneau  L,  Jeanne  S,  et al.,  2021,  The
               differentiation of human dental pulp stromal cells on 45S5   challenge of 3D bioprinting of composite natural polymers
               bioglass(R) based scaffolds in vitro and in vivo. Tissue Eng   PLA/bioglass: Trends and benefits in cleft palate surgery.
               Part A, 19(5–6):707–715.                           Biomedicines, 9(11).
               https://doi.org/10.1089/ten.TEA.2012.0112          https://doi.org/10.3390/biomedicines9111553
            40.  Ponce ML, 2009, Tube formation: An in vitro Matrigel   51.  Kasten P, Beyen I, Niemeyer P, et al., 2008, Porosity and pore
               angiogenesis assay. Methods Mol Biol, 467:183–188.  size of beta-tricalcium phosphate scaffold can influence
                                                                  protein production and osteogenic differentiation of human
               https://doi.org/10.1007/978-1-59745-241-0_10
                                                                  mesenchymal stem cells: An in vitro and in vivo study. Acta
            41.  Benton G, Arnaoutova I, George J,  et al., 2014, Matrigel:   Biomater, 4(6):1904–1915.
               From discovery and ECM mimicry to assays and models for   https://doi.org/10.1016/j.actbio.2008.05.017
               cancer research. Adv Drug Deliv Rev, 79-80:3–18.
                                                               52.  Hoemann CD, Rodriguez Gonzalez J, Guzman-Morales
               https://doi.org/10.1016/j.addr.2014.06.005         J,  et al., 2022, Chitosan coatings with distinct innate
            42.  Fischer D, Fluegen G, Garcia P, et al., 2022, The CAM model-  immune bioactivities differentially stimulate angiogenesis,
               Q&A with experts. Cancers (Basel), 15(1).          osteogenesis and chondrogenesis in poly-caprolactone
                                                                  scaffolds with controlled interconnecting pore size. Bioact
               https://doi.org/10.3390/cancers15010191            Mater, 10:430–442.

            43.  Weber J, Weber M, Steinle H,  et al., 2021, An alternative   https://doi.org/10.1016/j.bioactmat.2021.09.012
               in  vivo  model  to  evaluate  pluripotency  of  patient-specific   53.  Zhang  J,  Tong  D,  Song  H,  et al.,  2022,  Osteoimmunity-
               iPSCs. ALTEX, 38(3):442–450.                       regulating biomimetically hierarchical  scaffold for
               https://doi.org/10.14573/altex.2005221             augmented bone regeneration. Adv Mater, 34(36):e2202044.
            44.  Ribatti D, 2014, The chick embryo chorioallantoic membrane   https://doi.org/10.1002/adma.202202044
               as a model for tumor biology. Exp Cell Res, 328(2):314–324.  54.  Finotti PF, Costa LC, Capote TS,  et al., 2017, Immiscible
                                                                  poly(lactic acid)/poly(epsilon-caprolactone) for temporary
               https://doi.org/10.1016/j.yexcr.2014.06.010
                                                                  implants: Compatibility and cytotoxicity.  J Mech Behav
            45.  Hagedorn M, Balke M, Schmidt A,  et al., 2004, VEGF   Biomed Mater, 68:155–162.
               coordinates interaction of pericytes and endothelial cells   https://doi.org/10.1016/j.jmbbm.2017.01.050
               during vasculogenesis and experimental angiogenesis. Dev
               Dyn, 230(1):23–33.                              55.  Diomede F, Gugliandolo A, Cardelli P, et al., 2018, Three-
                                                                  dimensional printed PLA scaffold and human gingival stem
               https://doi.org/10.1002/dvdy.20020                 cell-derived extracellular vesicles: A new tool for bone defect
            46.  Cohrs NH, Schulz-Schonhagen K, Mohn D,  et al., 2019,   repair. Stem Cell Res Ther, 9(1):104.
               Modification of silicone elastomers with bioglass 45S5(R)   https://doi.org/10.1186/s13287-018-0850-0
               increases in ovo tissue biointegration. J Biomed Mater Res B   56.  Carvalho JRG, Conde G, Antonioli ML, et al., 2021, Long-
               Appl Biomater, 107(4):1180–1188.
                                                                  term evaluation of poly(lactic acid) (PLA) implants in a
               https://doi.org/10.1002/jbm.b.34211                horse: An experimental pilot study. Molecules, 26(23).
            47.  Vargas GE, Mesones RV, Bretcanu O,  et al., 2009,   https://doi.org/10.3390/molecules26237224
               Biocompatibility and bone mineralization potential of 45S5   57.  Fernandes HR, Gaddam A, Rebelo A, et al., 2018, Bioactive
               bioglass-derived glass-ceramic scaffolds in chick embryos.   glasses and glass-ceramics for healthcare applications in bone
               Acta Biomater, 5(1):374–380.                       regeneration and tissue engineering. Materials (Basel), 11(12).
               https://doi.org/10.1016/j.actbio.2008.07.016       https://doi.org/10.3390/ma11122530


            Volume 9 Issue 5 (2023)                         66                         https://doi.org/10.18063/ijb.751
   69   70   71   72   73   74   75   76   77   78   79