Page 74 - IJB-9-5
P. 74
International Journal of Bioprinting 3D-printed PLA-BG composite induces angiogenesis
37. Wu Z, He D, Li H, 2021, Bioglass enhances the production 48. Mangir N, Dikici S, Claeyssens F, et al., 2019, Using ex
of exosomes and improves their capability of promoting ovo chick chorioallantoic membrane (CAM) assay to
vascularization. Bioact Mater, 6(3):823–835. evaluate the biocompatibility and angiogenic response to
biomaterials. ACS Biomater Sci Eng, 5(7):3190–3200.
https://doi.org/10.1016/j.bioactmat.2020.09.011
https://doi.org/10.1021/acsbiomaterials.9b00172
38. El-Gendy R, Kirkham J, Newby PJ, et al., 2015, Investigating
the vascularization of tissue-engineered bone constructs 49. Baiguera S, Macchiarini P, Ribatti D, 2012, Chorioallantoic
using dental pulp cells and 45S5 bioglass(R) scaffolds. Tissue membrane for in vivo investigation of tissue-engineered
Eng Part A, 21(13–14):2034–2043. construct biocompatibility. J Biomed Mater Res B Appl
Biomater, 100(5):1425–1434.
https://doi.org/10.1089/ten.tea.2014.0485
https://doi.org/10.1002/jbm.b.32653
39. El-Gendy R, Yang XB, Newby PJ, et al., 2013, Osteogenic 50. Brezulier D, Chaigneau L, Jeanne S, et al., 2021, The
differentiation of human dental pulp stromal cells on 45S5 challenge of 3D bioprinting of composite natural polymers
bioglass(R) based scaffolds in vitro and in vivo. Tissue Eng PLA/bioglass: Trends and benefits in cleft palate surgery.
Part A, 19(5–6):707–715. Biomedicines, 9(11).
https://doi.org/10.1089/ten.TEA.2012.0112 https://doi.org/10.3390/biomedicines9111553
40. Ponce ML, 2009, Tube formation: An in vitro Matrigel 51. Kasten P, Beyen I, Niemeyer P, et al., 2008, Porosity and pore
angiogenesis assay. Methods Mol Biol, 467:183–188. size of beta-tricalcium phosphate scaffold can influence
protein production and osteogenic differentiation of human
https://doi.org/10.1007/978-1-59745-241-0_10
mesenchymal stem cells: An in vitro and in vivo study. Acta
41. Benton G, Arnaoutova I, George J, et al., 2014, Matrigel: Biomater, 4(6):1904–1915.
From discovery and ECM mimicry to assays and models for https://doi.org/10.1016/j.actbio.2008.05.017
cancer research. Adv Drug Deliv Rev, 79-80:3–18.
52. Hoemann CD, Rodriguez Gonzalez J, Guzman-Morales
https://doi.org/10.1016/j.addr.2014.06.005 J, et al., 2022, Chitosan coatings with distinct innate
42. Fischer D, Fluegen G, Garcia P, et al., 2022, The CAM model- immune bioactivities differentially stimulate angiogenesis,
Q&A with experts. Cancers (Basel), 15(1). osteogenesis and chondrogenesis in poly-caprolactone
scaffolds with controlled interconnecting pore size. Bioact
https://doi.org/10.3390/cancers15010191 Mater, 10:430–442.
43. Weber J, Weber M, Steinle H, et al., 2021, An alternative https://doi.org/10.1016/j.bioactmat.2021.09.012
in vivo model to evaluate pluripotency of patient-specific 53. Zhang J, Tong D, Song H, et al., 2022, Osteoimmunity-
iPSCs. ALTEX, 38(3):442–450. regulating biomimetically hierarchical scaffold for
https://doi.org/10.14573/altex.2005221 augmented bone regeneration. Adv Mater, 34(36):e2202044.
44. Ribatti D, 2014, The chick embryo chorioallantoic membrane https://doi.org/10.1002/adma.202202044
as a model for tumor biology. Exp Cell Res, 328(2):314–324. 54. Finotti PF, Costa LC, Capote TS, et al., 2017, Immiscible
poly(lactic acid)/poly(epsilon-caprolactone) for temporary
https://doi.org/10.1016/j.yexcr.2014.06.010
implants: Compatibility and cytotoxicity. J Mech Behav
45. Hagedorn M, Balke M, Schmidt A, et al., 2004, VEGF Biomed Mater, 68:155–162.
coordinates interaction of pericytes and endothelial cells https://doi.org/10.1016/j.jmbbm.2017.01.050
during vasculogenesis and experimental angiogenesis. Dev
Dyn, 230(1):23–33. 55. Diomede F, Gugliandolo A, Cardelli P, et al., 2018, Three-
dimensional printed PLA scaffold and human gingival stem
https://doi.org/10.1002/dvdy.20020 cell-derived extracellular vesicles: A new tool for bone defect
46. Cohrs NH, Schulz-Schonhagen K, Mohn D, et al., 2019, repair. Stem Cell Res Ther, 9(1):104.
Modification of silicone elastomers with bioglass 45S5(R) https://doi.org/10.1186/s13287-018-0850-0
increases in ovo tissue biointegration. J Biomed Mater Res B 56. Carvalho JRG, Conde G, Antonioli ML, et al., 2021, Long-
Appl Biomater, 107(4):1180–1188.
term evaluation of poly(lactic acid) (PLA) implants in a
https://doi.org/10.1002/jbm.b.34211 horse: An experimental pilot study. Molecules, 26(23).
47. Vargas GE, Mesones RV, Bretcanu O, et al., 2009, https://doi.org/10.3390/molecules26237224
Biocompatibility and bone mineralization potential of 45S5 57. Fernandes HR, Gaddam A, Rebelo A, et al., 2018, Bioactive
bioglass-derived glass-ceramic scaffolds in chick embryos. glasses and glass-ceramics for healthcare applications in bone
Acta Biomater, 5(1):374–380. regeneration and tissue engineering. Materials (Basel), 11(12).
https://doi.org/10.1016/j.actbio.2008.07.016 https://doi.org/10.3390/ma11122530
Volume 9 Issue 5 (2023) 66 https://doi.org/10.18063/ijb.751

