Page 73 - IJB-9-5
P. 73

International Journal of Bioprinting                        3D-printed PLA-BG composite induces angiogenesis



            15.  Lyyra I, Leino K, Hukka T,  et al., 2021, Impact of glass   27.  Handel M, Hammer TR, Nooeaid P,  et al., 2013, 45S5-
               composition on hydrolytic degradation of polylactide/  bioglass((R))-based 3D-scaffolds seeded with human
               bioactive glass composites. Materials (Basel), 14(3).  adipose tissue-derived stem  cells  induce  in  vivo
               https://doi.org/10.3390/ma14030667                 vascularization in the CAM angiogenesis assay. Tissue Eng
                                                                  Part A, 19(23–24):2703–2712.
            16.  Söhling N, Neijhoft J, Nienhaus V, et al., 2020, 3D-printing
               of hierarchically designed and osteoconductive bone tissue   https://doi.org/10.1089/ten.TEA.2012.0707
               engineering scaffolds. Materials (Basel), 13(8).  28.  Deb S, Mandegaran R, Di Silvio L, 2010, A porous scaffold
               https://doi.org/10.3390/ma13081836                 for bone tissue engineering/45S5 bioglass derived porous
                                                                  scaffolds for co-culturing osteoblasts and endothelial cells.
            17.  Schätzlein E, Kicker C, Söhling N, et al., 2022, 3D-printed   J Mater Sci Mater Med, 21(3):893–905.
               PLA-bioglass scaffolds with controllable calcium release and
               MSC adhesion for bone tissue engineering. Polymers (Basel),   https://doi.org/10.1007/s10856-009-3936-5
               14(12).                                         29.  Stähli C, James-Bhasin M, Hoppe A, et al., 2015, Effect of ion
               https://doi.org/10.3390/polym14122389              release from Cu-doped 45S5 bioglass(R) on 3D endothelial
                                                                  cell morphogenesis. Acta Biomater, 19:15–22.
            18.  Söhling N, Al Zoghool S, Schätzlein E,  et al., 2022, In
               vitro evaluation of a 20% bioglass-containing 3D printable   https://doi.org/10.1016/j.actbio.2015.03.009
               PLA composite for bone tissue engineering. Int J Bioprint,   30.  Eldesoqi K, Seebach C, Nguyen Ngoc C, et al., 2013, High
               8(4):602.                                          calcium bioglass enhances differentiation and survival of
               https://doi.org/10.18063/ijb.v8i4.602              endothelial progenitor cells, inducing early vascularization
                                                                  in critical size bone defects. PLoS One, 8(11):e79058.
            19.  Giannoudis PV, Atkins R, 2007, Management of long-bone
               non-unions. Injury, 38(Suppl 2):S1–S2.             https://doi.org/10.1371/journal.pone.0079058
            20.  Andrzejowski  P,  Giannoudis  PV,  2019,  The  ‘diamond   31.  Barbeck M, Serra T, Booms P, et al., 2017, Analysis of the
               concept’  for  long  bone  non-union  management.  J Orthop   in vitro degradation and the in vivo tissue response to bi-
               Traumatol, 20(1):21.                               layered 3D-printed scaffolds combining PLA and biphasic
                                                                  PLA/bioglass components—Guidance of the inflammatory
               https://doi.org/10.1186/s10195-019-0528-0          response  as  basis  for  osteochondral regeneration.  Bioact
            21.  Mahapatra C, Kumar P, Paul MK, et al., 2022, Angiogenic   Mater, 2(4):208–223.
               stimulation strategies in bone tissue regeneration.  Tissue   https://doi.org/10.1016/j.bioactmat.2017.06.001
               Cell, 79:101908.
                                                               32.  Livak KJ, Schmittgen TD, 2001, Analysis of relative gene
               https://doi.org/10.1016/j.tice.2022.101908         expression data using real-time quantitative PCR and the
            22.  Rather HA, Jhala D, Vasita R, 2019, Dual functional approaches   2(-Delta Delta C(T)) method. Methods, 25(4):402–408.
               for osteogenesis coupled angiogenesis in bone tissue   https://doi.org/10.1006/meth.2001.1262
               engineering. Mater Sci Eng C Mater Biol Appl, 103:109761.
                                                               33.  Carpentier G, Berndt S, Ferratge S, et al., 2020, Angiogenesis
               https://doi.org/10.1016/j.msec.2019.109761         analyzer for ImageJ—A comparative morphometric analysis
            23.  Tsiridis E, Upadhyay N, Giannoudis P, 2007, Molecular   of “Endothelial Tube Formation Assay” and “Fibrin Bead
               aspects of fracture healing: Which are the important   Assay”. Sci Rep, 10(1):11568.
               molecules? Injury, 38(Suppl 1):S11–S25.            https://doi.org/10.1038/s41598-020-67289-8
               https://doi.org/10.1016/j.injury.2007.02.006    34.  Buhr  CR, Wiesmann N,  Tanner RC,  et  al., 2020,  The
            24.  Zhao D, Zhu T, Li J,  et al., 2021, Poly(lactic-co-glycolic   chorioallantoic  membrane  assay  in  nanotoxicological
               acid)-based composite bone-substitute materials.  Bioact   research—An alternative for in vivo experimentation.
               Mater, 6(2):346–360.                               Nanomaterials (Basel), 10(12).
               https://doi.org/10.1016/j.bioactmat.2020.08.016    https://doi.org/10.3390/nano10122328
            25.  Zhu  T,  Jiang  M,  Zhang  M,  et al.,  2022,  Biofunctionalized   35.  Ribatti D, Annese T, Tamma R, 2020, The use of the chick
               composite scaffold to potentiate osteoconduction,   embryo  CAM assay  in the  study of  angiogenic  activiy  of
               angiogenesis, and favorable metabolic microenvironment   biomaterials. Microvasc Res, 131:104026.
               for osteonecrosis therapy. Bioact Mater, 9:446–460.  https://doi.org/10.1016/j.mvr.2020.104026
               https://doi.org/10.1016/j.bioactmat.2021.08.005  36.  Yu Y, Yang B, Tian D,  et al., 2022, Thiolated hyaluronic
            26.  Li H, He J, Yu H,  et al., 2016, Bioglass promotes wound   acid/silk fibroin dual-network hydrogel incorporated with
               healing by affecting gap junction connexin 43 mediated   bioglass nanoparticles for wound healing. Carbohydr Polym,
               endothelial cell behavior. Biomaterials, 84:64–75.  288:119334.
               https://doi.org/10.1016/j.biomaterials.2016.01.033  https://doi.org/10.1016/j.carbpol.2022.119334


            Volume 9 Issue 5 (2023)                         65                         https://doi.org/10.18063/ijb.751
   68   69   70   71   72   73   74   75   76   77   78