Page 73 - IJB-9-5
P. 73
International Journal of Bioprinting 3D-printed PLA-BG composite induces angiogenesis
15. Lyyra I, Leino K, Hukka T, et al., 2021, Impact of glass 27. Handel M, Hammer TR, Nooeaid P, et al., 2013, 45S5-
composition on hydrolytic degradation of polylactide/ bioglass((R))-based 3D-scaffolds seeded with human
bioactive glass composites. Materials (Basel), 14(3). adipose tissue-derived stem cells induce in vivo
https://doi.org/10.3390/ma14030667 vascularization in the CAM angiogenesis assay. Tissue Eng
Part A, 19(23–24):2703–2712.
16. Söhling N, Neijhoft J, Nienhaus V, et al., 2020, 3D-printing
of hierarchically designed and osteoconductive bone tissue https://doi.org/10.1089/ten.TEA.2012.0707
engineering scaffolds. Materials (Basel), 13(8). 28. Deb S, Mandegaran R, Di Silvio L, 2010, A porous scaffold
https://doi.org/10.3390/ma13081836 for bone tissue engineering/45S5 bioglass derived porous
scaffolds for co-culturing osteoblasts and endothelial cells.
17. Schätzlein E, Kicker C, Söhling N, et al., 2022, 3D-printed J Mater Sci Mater Med, 21(3):893–905.
PLA-bioglass scaffolds with controllable calcium release and
MSC adhesion for bone tissue engineering. Polymers (Basel), https://doi.org/10.1007/s10856-009-3936-5
14(12). 29. Stähli C, James-Bhasin M, Hoppe A, et al., 2015, Effect of ion
https://doi.org/10.3390/polym14122389 release from Cu-doped 45S5 bioglass(R) on 3D endothelial
cell morphogenesis. Acta Biomater, 19:15–22.
18. Söhling N, Al Zoghool S, Schätzlein E, et al., 2022, In
vitro evaluation of a 20% bioglass-containing 3D printable https://doi.org/10.1016/j.actbio.2015.03.009
PLA composite for bone tissue engineering. Int J Bioprint, 30. Eldesoqi K, Seebach C, Nguyen Ngoc C, et al., 2013, High
8(4):602. calcium bioglass enhances differentiation and survival of
https://doi.org/10.18063/ijb.v8i4.602 endothelial progenitor cells, inducing early vascularization
in critical size bone defects. PLoS One, 8(11):e79058.
19. Giannoudis PV, Atkins R, 2007, Management of long-bone
non-unions. Injury, 38(Suppl 2):S1–S2. https://doi.org/10.1371/journal.pone.0079058
20. Andrzejowski P, Giannoudis PV, 2019, The ‘diamond 31. Barbeck M, Serra T, Booms P, et al., 2017, Analysis of the
concept’ for long bone non-union management. J Orthop in vitro degradation and the in vivo tissue response to bi-
Traumatol, 20(1):21. layered 3D-printed scaffolds combining PLA and biphasic
PLA/bioglass components—Guidance of the inflammatory
https://doi.org/10.1186/s10195-019-0528-0 response as basis for osteochondral regeneration. Bioact
21. Mahapatra C, Kumar P, Paul MK, et al., 2022, Angiogenic Mater, 2(4):208–223.
stimulation strategies in bone tissue regeneration. Tissue https://doi.org/10.1016/j.bioactmat.2017.06.001
Cell, 79:101908.
32. Livak KJ, Schmittgen TD, 2001, Analysis of relative gene
https://doi.org/10.1016/j.tice.2022.101908 expression data using real-time quantitative PCR and the
22. Rather HA, Jhala D, Vasita R, 2019, Dual functional approaches 2(-Delta Delta C(T)) method. Methods, 25(4):402–408.
for osteogenesis coupled angiogenesis in bone tissue https://doi.org/10.1006/meth.2001.1262
engineering. Mater Sci Eng C Mater Biol Appl, 103:109761.
33. Carpentier G, Berndt S, Ferratge S, et al., 2020, Angiogenesis
https://doi.org/10.1016/j.msec.2019.109761 analyzer for ImageJ—A comparative morphometric analysis
23. Tsiridis E, Upadhyay N, Giannoudis P, 2007, Molecular of “Endothelial Tube Formation Assay” and “Fibrin Bead
aspects of fracture healing: Which are the important Assay”. Sci Rep, 10(1):11568.
molecules? Injury, 38(Suppl 1):S11–S25. https://doi.org/10.1038/s41598-020-67289-8
https://doi.org/10.1016/j.injury.2007.02.006 34. Buhr CR, Wiesmann N, Tanner RC, et al., 2020, The
24. Zhao D, Zhu T, Li J, et al., 2021, Poly(lactic-co-glycolic chorioallantoic membrane assay in nanotoxicological
acid)-based composite bone-substitute materials. Bioact research—An alternative for in vivo experimentation.
Mater, 6(2):346–360. Nanomaterials (Basel), 10(12).
https://doi.org/10.1016/j.bioactmat.2020.08.016 https://doi.org/10.3390/nano10122328
25. Zhu T, Jiang M, Zhang M, et al., 2022, Biofunctionalized 35. Ribatti D, Annese T, Tamma R, 2020, The use of the chick
composite scaffold to potentiate osteoconduction, embryo CAM assay in the study of angiogenic activiy of
angiogenesis, and favorable metabolic microenvironment biomaterials. Microvasc Res, 131:104026.
for osteonecrosis therapy. Bioact Mater, 9:446–460. https://doi.org/10.1016/j.mvr.2020.104026
https://doi.org/10.1016/j.bioactmat.2021.08.005 36. Yu Y, Yang B, Tian D, et al., 2022, Thiolated hyaluronic
26. Li H, He J, Yu H, et al., 2016, Bioglass promotes wound acid/silk fibroin dual-network hydrogel incorporated with
healing by affecting gap junction connexin 43 mediated bioglass nanoparticles for wound healing. Carbohydr Polym,
endothelial cell behavior. Biomaterials, 84:64–75. 288:119334.
https://doi.org/10.1016/j.biomaterials.2016.01.033 https://doi.org/10.1016/j.carbpol.2022.119334
Volume 9 Issue 5 (2023) 65 https://doi.org/10.18063/ijb.751

