Page 72 - IJB-9-5
P. 72

International Journal of Bioprinting                        3D-printed PLA-BG composite induces angiogenesis



            Funding acquisition: Ulrike Ritz, Dirk Henrich, Andreas   scaffolds with enhanced biological properties for guided
               Blaeser, Johannes Frank, Philipp Drees, Erol Gercek  bone regeneration. Int J Biol Macromol, 221:371–380.
            Investigation: Simon Cichos, Nadine Wiesmann-Imilowski  https://doi.org/10.1016/j.ijbiomac.2022.09.003
            Methodology: Simon Cichos, Eva Schätzlein,  Nadine
               Wiesmann-Imilowski                              6.   Alksne M, Kalvaityte M, Simoliunas E, et al., 2020, In vitro
            Project administration: Ulrike Ritz, Dirk Henrich, Andreas   comparison of 3D printed polylactic acid/hydroxyapatite
                                                                  and polylactic acid/bioglass composite scaffolds: Insights
               Blaeser
            Resources: Eva Schätzlein, Ulrike Ritz, Dirk Henrich,   into materials for bone regeneration. J Mech Behav Biomed
                                                                  Mater, 104:103641.
               Andreas Blaeser, Philipp Drees, Erol Gercek
            Supervision: Ulrike Ritz, Dirk Henrich Andreas Blaeser  https://doi.org/10.1016/j.jmbbm.2020.103641
            Validation: Ulrike Ritz                            7.   Hench LL, Jones JR, 2015, Bioactive glasses: Frontiers and
            Visualization: Ulrike Ritz, Eva Schätzlein, Johannes Frank,   challenges. Front Bioeng Biotechnol, 3:194.
               Dirk Henrich
            Writing – original draft: Ulrike Ritz, Simon Cichos   https://doi.org/10.3389/fbioe.2015.00194
            Writing – review & editing: Eva Schätzlein, Nadine   8.   Zare S, Mohammadpour M, Izadi Z, et al., 2022, Nanofibrous
               Wiesmann-Imilowski, Andreas Blaeser, Dirk Henrich,   hydrogel nanocomposite based on strontium-doped bioglass
               Johannes Frank, Philipp Drees, Erol Gercek         nanofibers for bone tissue engineering applications. Biology
                                                                  (Basel), 11(10).
               All authors have read and agreed to the published
            version of the manuscript.                            https://doi.org/10.3390/biology11101472
                                                               9.   Kumari S, Singh D, Srivastava P, et al., 2022, Generation of
            Ethics approval and consent to participate            graphene oxide and nano-bioglass based scaffold for bone
                                                                  tissue regeneration. Biomed Mater, 17(6).
            Not applicable.
                                                                  https://doi.org/10.1088/1748-605X/ac92b4
            Consent for publication                            10.  Kukulka EC, de Souza JR, de Araujo JCR,  et al., 2023,
            Not applicable.                                       Polycaprolactone/chlorinated bioglass scaffolds doped
                                                                  with Mg and Li ions: Morphological, physicochemical, and
            Availability of data                                  biological analysis.  J Biomed Mater Res B Appl Biomater,
                                                                  111(1):140–150.
            The data that support the findings of this study are available   https://doi.org/10.1002/jbm.b.35140
            on request from the corresponding author.
                                                               11.  Daskalakis E, Huang B, Vyas C,  et al., 2022, Novel 3D
            References                                            bioglass scaffolds for bone tissue regeneration.  Polymers
                                                                  (Basel), 14(3).
            1.   Karalashvili L, Kakabadze A, Uhryn M, et al., 2018, Bone   https://doi.org/10.3390/polym14030445
               grafts for reconstruction of bone defects (review). Georgian
               Med News, 282:44–49.                            12.  Blaker JJ, Gough JE, Maquet V, et al., 2003, In vitro evaluation
                                                                  of novel bioactive composites based on bioglass-filled
            2.   Schmidt AH, 2021, Autologous bone graft: Is it still the gold   polylactide  foams  for  bone  tissue  engineering  scaffolds.  J
               standard? Injury, 52(Suppl 2):S18–S22.             Biomed Mater Res A, 67(4):1401–1411.
               https://doi.org/10.1016/j.injury.2021.01.043       https://doi.org/10.1002/jbm.a.20055
            3.   Arif ZU, Khalid MY, Noroozi R, et al., 2022, Recent advances   13.  Maquet V, Boccaccini AR, Pravata L, et al., 2003, Preparation,
               in 3D-printed polylactide and polycaprolactone-based   characterization, and in vitro degradation of bioresorbable
               biomaterials for tissue engineering applications.  Int J Biol   and bioactive composites based on bioglass-filled polylactide
               Macromol, 218:930–968.                             foams. J Biomed Mater Res A, 66(2):335–346.
               https://doi.org/10.1016/j.ijbiomac.2022.07.140     https://doi.org/10.1002/jbm.a.10587
            4.   Kaya I, Sahin MC, Cingoz ID, et al., 2019, Three dimensional
               printing and biomaterials in the repairment of bone defects;   14.  Roether  JA,  Boccaccini  AR,  Hench  LL,  et al.,  2002,
               hydroxyapatite PLA filaments. Turk J Med Sci, 49(3):922–927.  Development and in vitro characterisation of novel
                                                                  bioresorbable and bioactive composite materials based
               https://doi.org/10.3906/sag-1901-184               on polylactide foams and bioglass for tissue engineering
            5.   Liu T, Li B, Chen G, et al., 2022, Nano tantalum-coated 3D   applications. Biomaterials, 23(18):3871–3878.
               printed porous polylactic acid/beta-tricalcium phosphate   https://doi.org/10.1016/s0142-9612(02)00131-x


            Volume 9 Issue 5 (2023)                         64                         https://doi.org/10.18063/ijb.751
   67   68   69   70   71   72   73   74   75   76   77