Page 137 - IJB-9-6
P. 137

International Journal of Bioprinting                                   Exosome-based bioink for bioprinting




            60.  Malda J, Visser J, Melchels FP, et al., 2013, 25th anniversary   An alternative strategy for gene therapy. J Nanobiotechnol,
               article: Engineering hydrogels for biofabrication. Adv Mater,   20(1): 1–23.
               25: 5011–5028.
                                                                  https://doi.org/10.1186/s12951-022-01347-3
               https://doi.org/10.1002/adma.201302042
                                                               72.  Zhang K, Zhao X, Chen X, et al., 2018, Enhanced therapeutic
            61.  Ng WL, Lee JM, Zhou M, et al., 2020, Vat polymerization-  effects of mesenchymal stem cell-derived exosomes with an
               based bioprinting-process, materials, applications and   injectable hydrogel for hindlimb ischemia treatment. ACS
               regulatory challenges. Biofabrication, 12: 022001.  Appl Mater Interfaces, 10: 30081–30091.
               https://doi.org/10.1088/1758-5090/ab6034           https://doi.org/10.1021/acsami.8b08449
            62.  Zhang B, Gao L, Ma L, et al., 2019, 3D bioprinting: A novel   73.  Nagappan PG, Chen H, Wang DY, 2020, Neuroregeneration
               avenue for manufacturing tissues and organs. Engineering, 5:   and plasticity: A review of the physiological mechanisms for
               777–794.                                           achieving functional recovery postinjury. Mil Med Res, 7: 30.
               https://doi.org/10.1016/j.eng.2019.03.009          https://doi.org/10.1186/s40779-020-00259-3
            63.  Kingsley DM, Roberge CL, Rudkouskaya A, et al., 2019, Laser-  74.  Poongodi R, Chen Y-L, Yang T-H, et al., 2021, Bio-scaffolds
               based 3D bioprinting for spatial and size control of tumor   as cell or exosome carriers for nerve injury repair. Int J Mol
               spheroids and embryoid bodies. Acta Biomater, 95: 357–370.  Sci, 22:
               https://doi.org/10.1016/j.actbio.2019.02.014       https://doi.org/10.3390/ijms222413347
            64.  Sohn H-S, Oh J-K, 2019, Review of bone graft and bone   75.  Liu X, Wang  J, Wang P,  et  al., 2022, Hypoxia-pretreated
               substitutes with an emphasis on fracture surgeries. Biomater   mesenchymal stem cell-derived exosomes-loaded low-
               Res, 23(1): 1–7.                                   temperature extrusion 3D-printed implants for neural
               https://doi.org/10.1186/s40824-019-0157-y          regeneration after traumatic brain injury in canines. Front
                                                                  Bioeng Biotechnol, 10: 1025138.
            65.  Liang Q, Ma Y, Yao X, et al., 2022, Advanced 3D-printing
               bioinks for articular cartilage. Int J Bioprint, 8: 15–30.  https://doi.org/10.3389/fbioe.2022.1025138
               https://doi.org/10.18063/ijb.v8i3.511           76.  Han M, Yang H, Lu X, et al., 2022, Three-dimensional-cultured
                                                                  MSC-derived  exosome-hydrogel  hybrid  microneedle array
            66.  Fan J, Lee CS, Kim S, et al., 2020, Generation of small RNA-  patch for spinal cord repair. Nano Lett, 22: 6391–6401.
               modulated exosome mimetics for bone regeneration. ACS
               Nano, 14: 11973–11984.                             https://doi.org/10.1021/acs.nanolett.2c02259
               https://doi.org/10.1021/acsnano.0c05122         77.  Li L, Zhang Y, Mu J, et al., 2020, Transplantation of human
                                                                  mesenchymal stem-cell-derived exosomes immobilized  in
            67.  Zha Y, Li Y, Lin T, et al., 2021, Progenitor cell-derived   an adhesive hydrogel for effective treatment of spinal cord
               exosomes endowed with VEGF plasmids enhance osteogenic   injury. Nano Lett, 20: 4298–4305.
               induction and vascular remodeling in large segmental bone
               defects. Theranostics, 11: 397–409.                https://doi.org/10.1021/acs.nanolett.0c00929
               https://doi.org/10.7150/thno.50741              78.  Hsu JM, Shiue SJ, Yang KD, et al., Locally applied stem cell
                                                                  exosome-scaffold attenuates nerve injury-induced pain in
            68.  Chen P, Zheng L, Wang Y, et al., 2019, Desktop-  rats. J Pain Res, 13: 3257–3268.
               stereolithography 3D printing of a radially oriented
               extracellular matrix/mesenchymal stem cell exosome bioink   https://doi.org/10.2147/JPR.S286771
               for osteochondral defect regeneration.  Theranostics, 9:   79.  Rao F, Zhang D, Fang T, et al., 2019, Exosomes from human
               2439–2459.                                         gingiva-derived mesenchymal stem cells combined with
               https://doi.org/10.7150/thno.31017                 biodegradable chitin conduits promote rat sciatic nerve
                                                                  regeneration. Stem Cells Int, 2019: 2546367.
            69.  Wu Z, Pu P, Su Z, et al., 2020, Schwann cell-derived exosomes
               promote bone regeneration and repair by enhancing the   https://doi.org/10.1155/2019/2546367
               biological  activity  of  porous  Ti6Al4V  scaffolds.  Biochem   80.  Liu Z, Tong H, Li J, et al., 2022, Low-stiffness hydrogels
               BiophysRes Commun, 531: 559–565.                   promote  peripheral  nerve  regeneration through the  rapid
               https://doi.org/10.1016/j.bbrc.2020.07.094         release of exosomes. Front Bioeng Biotechnol, 10: 922570.
            70.  Zha Y, Lin T, Li Y, et al., 2020, Exosome-mimetics as   https://doi.org/10.3389/fbioe.2022.922570
               an engineered gene-activated matrix induces in-situ   81.  Wang T, Li Y, Guo M, et al., 2021, Exosome-mediated delivery
               vascularized osteogenesis. Biomaterials, 247: 119985.
                                                                  of the neuroprotective peptide PACAP38 promotes retinal
               https://doi.org/10.1016/j.biomaterials.2020.119985  ganglion cell survival and axon regeneration in rats with
                                                                  traumatic optic neuropathy. Front Cell Develop Biol, 9: 659783.
            71.  Li F, Wu J, Li D, et al., 2022, Engineering stem cells to
               produce exosomes with enhanced bone regeneration effects:   https://doi.org/10.3389/fcell.2021.659783
            Volume 9 Issue 6 (2023)                        129                         https://doi.org/10.36922/ijb.0114
   132   133   134   135   136   137   138   139   140   141   142