Page 139 - IJB-9-6
P. 139

International Journal of Bioprinting                                   Exosome-based bioink for bioprinting




            105. Faught  E, Henrickson L, Vijayan  MM, 2017,  Plasma   stromal cell-derived factor-1α and exosomes. Bioact Mater,
               exosomes are enriched in Hsp70 and modulated by stress   25: 460–471.
               and cortisol in rainbow trout. J Endocrinol, 232: 237–246.
                                                                  https://doi.org/10.1016/j.bioactmat.2022.07.030
               https://doi.org/10.1530/JOE-16-0427             113.  Zhao Y, Gong Y, Liu X, et al., 2022, The experimental study
            106. Hong CS, Funk S, Muller L,  et al., 2016, Isolation of   of  periodontal  ligament  stem  cells  derived  exosomes  with
               biologically active and morphologically intact exosomes from   hydrogel accelerating bone regeneration on alveolar bone
               plasma of patients with cancer. J Extracell Vesicles, 5: 29289.  defect. Pharmaceutics, 14(10): 2189.
               https://doi.org/10.3402/jev.v5.29289               https://doi.org/10.3390/pharmaceutics14102189
            107. Zarovni N, Corrado A, Guazzi P, et al., 2015, Integrated   114. Wang L, Wang J, Zhou X, et al., 2020, A new self-healing
               isolation and  quantitative  analysis  of  exosome  shuttled   hydrogel  containing  hucMSC-derived  exosomes  promotes
               proteins and nucleic acids using immunocapture approaches.   bone regeneration. Front Bioeng Biotechnol, 8: 564731.
               Methods, 87: 46–58.                                https://doi.org/10.3389/fbioe.2020.564731
               https://doi.org/10.1016/j.ymeth.2015.05.028
                                                               115. Mu J, Li L, Wu J,  et al., 2022, Hypoxia-stimulated
            108. Zhang Y, Liu Y, Liu H, et al., 2019, Exosomes: Biogenesis,   mesenchymal stem cell-derived exosomes loaded by
               biologic function and clinical potential. Cell Biosci, 9: 19.  adhesive  hydrogel  for  effective angiogenic  treatment of
               https://doi.org/10.1186/s13578-019-0282-2          spinal cord injury. Biomater Sci, 10: 1803–1811.
            109. Hu Y, Li X, Zhang Q, et al., 2021, Exosome-guided bone   https://doi.org/10.1039/d1bm01722e
               targeted delivery of Antagomir-188 as an anabolic therapy   116. Shi Q, Qian Z, Liu D, et al., 2017, GMSC-derived exosomes
               for bone loss. Bioact Mater, 6: 2905–2913.         combined with a chitosan/silk hydrogel sponge accelerates
               https://doi.org/10.1016/j.bioactmat.2021.02.014    wound healing in a diabetic rat skin defect model.  Front
                                                                  Physiol, 8: 904.
            110. Ma S, Wu J, Hu H, et al., 2022, Novel fusion peptides deliver
               exosomes to modify injectable thermo-sensitive hydrogels   https://doi.org/10.3389/fphys.2017.00904
               for bone regeneration. Mater Today Bio, 13: 100195.  117. Han C, Zhou J, Liang C, et al., 2019, Human umbilical cord
               https://doi.org/10.1016/j.mtbio.2021.100195        mesenchymal stem cell derived exosomes encapsulated
            111. Zhang FX, Liu P, Ding W, et al., 2021, Injectable mussel-  in functional peptide hydrogels promote cardiac repair.
               inspired highly adhesive hydrogel with exosomes    Biomater Sci, 7(7): 2920–2933.
               for  endogenous  cell  recruitment  and  cartilage  defect   118. Wang C, Wang M, Xu T, et al., 2019, Engineering bioactive
               regeneration. Biomaterials, 278: 121169.           self-healing antibacterial exosomes hydrogel for promoting
               https://doi.org/10.1016/j.biomaterials.2021.121169  chronic  diabetic  wound  healing  and  complete  skin
                                                                  regeneration. Theranostics, 9: 65–76.
            112. Chen L, Yu C, Xiong Y, et al., 2022, Multifunctional hydrogel
               enhances  bone  regeneration  through  sustained  release  of      https://doi.org/10.7150/thno.29766






























            Volume 9 Issue 6 (2023)                        131                         https://doi.org/10.36922/ijb.0114
   134   135   136   137   138   139   140   141   142   143   144