Page 136 - IJB-9-6
P. 136

International Journal of Bioprinting                                   Exosome-based bioink for bioprinting




            37.  Tang Q, Lu B, He J, et al., 2022, Exosomes-loaded   47.  Badylak SF, Taylor D, Uygun K, 2011,  Annual Review of
               thermosensitive hydrogels for corneal epithelium and   Biomedical Engineering, Annual Reviews Inc, 27–53.
               stroma regeneration. Biomaterials, 280: 121320.
                                                               48.  Song  JJ,  Ott  HC,  2011,  Organ  engineering  based  on
               https://doi.org/10.1016/j.biomaterials.2021.121320  decellularized matrix scaffolds. Trends Mol Med, 17: 424–432.
            38.  Lin J, Wang Z, Huang J, et al., 2021, Microenvironment-  https://doi.org/10.1016/j.molmed.2011.03.005
               protected exosome-hydrogel for facilitating endometrial
               regeneration, fertility restoration, and live birth of offspring.   49.  Londono  R,  Badylak  SF,  2015,  Biologic  scaffolds  for
               Small, 17(11): 2007235.                            regenerative medicine: Mechanisms of in vivo remodeling.
                                                                  Ann Biomed Eng, 43: 577–592.
               https://doi.org/10.1002/smll.202007235
                                                                  https://doi.org/10.1007/s10439-014-1103-8
            39.  Rolland TJ, Peterson TE, Singh RD, et al., 2022, Exosome
               biopotentiated hydrogel restores damaged skeletal muscle in   50.  Yi HG, Jeong YH, Kim Y, et al., 2019, A bioprinted human-
               a porcine model of stress urinary incontinence (vol 29, 58,   glioblastoma-on-a-chip for the identification of patient-specific
               2022). NPJ Regen Medi, 7(1): 1–17.                 responses to chemoradiotherapy. Nat Biomedi Eng, 3: 509–519.
               https://doi.org/10.1038/s41536-022-00260-5         https://doi.org/10.1038/s41551-019-0363-x
            40.  Zhang Y, Huo M, Wang Y, et al., 2022, A tailored bioactive   51.  Wu Y,  Wang J,  Shi Y, et al., 2017,  Implantation  of brain-
               3D  porous  poly(lactic-acid)-exosome  scaffold  with  osteo-  derived extracellular matrix enhances neurological recovery
               immunomodulatory  and  osteogenic  differentiation  after traumatic brain injury. Cell Transplant, 26: 1224–1234.
               properties. J BiolEng, 16(1):1–14.                 https://doi.org/10.1177/0963689717714090
               https://doi.org/10.1186/s13036-022-00301-z      52.  Barrs RW, Jia J, Silver SE,  et al., 2020, Biomaterials for
            41.  Li Q, Gong S, Yao W, et al., 2021, Exosome loaded genipin   bioprinting microvasculature. Chem Rev, 120: 10887–10949.
               crosslinked hydrogel facilitates full thickness cutaneous   https://doi.org/10.1021/acs.chemrev.0c00027
               wound healing in rat animal model. Drug Deliv, 28: 884–893,
                                                               53.  Valot L, Martinez J, Mehdi A, et al., 2019, Chemical insights
               https://doi.org/10.1080/10717544.2021.1912210      into bioinks for 3D printing. Chem Soc Rev, 48: 4049–4086.
            42.  Fan L, Liu C, Chen X, et al., 2022, Exosomes-loaded   https://doi.org/10.1039/c7cs00718c
               electroconductive hydrogel synergistically promotes tissue
               repair  after  spinal  cord  injury  via  immunoregulation  and   54.  Ozbolat IT, Hospodiuk M, 2016, Current advances and
               enhancement of myelinated axon growth.  Adv Sci, 9(13):   future  perspectives  in extrusion-based bioprinting.
               2105586.                                           Biomaterials, 76: 321–343.
               https://doi.org/10.1002/advs.202105586             https://doi.org/10.1016/j.biomaterials.2015.10.076
            43.  Liu S, Li R, Dou K, et al., 2023, Injectable thermo-sensitive   55.  Xia Z, Jin S, Ye K, 2018, Tissue and organ 3D bioprinting.
               hydrogel containing ADSC-derived exosomes for the   SLAS Technol, 23: 301–314.
               treatment of cavernous nerve injury. Carbohydr Polym, 300:   https://doi.org/10.1177/2472630318760515
               120226.
                                                               56.  Leucht A, Volz AC, Rogal J, et al., 2020, Advanced gelatin-
               https://doi.org/10.1016/j.carbpol.2022.120226      based vascularization bioinks for extrusion-based bioprinting
            44.  Li Y, Wang Min, Sun Meng, et al., 2022, Engineering   of vascularized bone equivalents. Sci Rep, 10: 5330.
               antioxidant poly (citrate-gallic acid)-exosome hybrid   https://doi.org/10.1038/s41598-020-62166-w
               hydrogel  with  microglia  immunoregulation  for  traumatic
               brain injury-post neuro-restoration.  Compos Part B-Eng,   57.  Li X, Liu B, Pei B, et al., 2020, Inkjet bioprinting of
               242: 110034.                                       biomaterials. Chem Rev, 120: 10793–10833.
               https://doi.org/10.1016/j.compositesb.2022.110034  https://doi.org/10.1021/acs.chemrev.0c00008
            45.  Yu Z, Hao R, Du J, et al., 2022, A human cornea-on-a-chip   58.  Miri AK, Khalilpour A, Cecen B, et al., 2019, Multiscale
               for the study of epithelial wound healing by extracellular   bioprinting of vascularized models. Biomaterials, 198: 204–
               vesicles. iScience, 25: 104200.                    216.
               https://doi.org/10.1016/j.isci.2022.104200         https://doi.org/10.1016/j.biomaterials.2018.08.006
            46.  Shafei S, Khanmohammadi M, Heidari R, et al., 2020,   59.  Suntornnond R, Ng WL, Huang X, et al., 2022, Improving
               Exosome loaded alginate hydrogel promotes tissue   printability of hydrogel-based bio-inks for thermal inkjet
               regeneration in full-thickness skin wounds: An in vivo   bioprinting applications via saponification and heat
               study. J Biomed Mater Res Part A, 108: 545–556.    treatment processes. J Mater Chem B, 10: 5989–6000.
               https://doi.org/10.1002/jbm.a.36835                https://doi.org/10.1039/d2tb00442a


            Volume 9 Issue 6 (2023)                        128                         https://doi.org/10.36922/ijb.0114
   131   132   133   134   135   136   137   138   139   140   141