Page 138 - IJB-9-6
P. 138
International Journal of Bioprinting Exosome-based bioink for bioprinting
82. Sun BK, Siprashvili Z, Khavari PA, 2014, Advances in skin inflammation via extracellular vesicle-mediated delivery of
grafting and treatment of cutaneous wounds. Science, 346: miRNA. Stem Cells Transl Med, 8: 1192–1201.
941–945.
https://doi.org/10.1002/sctm.18-0297
https://doi.org/10.1126/science.1253836
94. Sorkio A, Koch L, Koivusalo L, et al., 2018, Human stem cell
83. Avci P, Gupta A, Sadasivam M, et al., 2013, Low-level based corneal tissue mimicking structures using laser-assisted
laser (light) therapy (LLLT) in skin: Stimulating, healing, 3D bioprinting and functional bioinks. Biomaterials, 171: 57–71.
restoring. Semin Cutan Med Surg, 32: 41–52 https://doi.org/10.1016/j.biomaterials.2018.04.034
84. Xiong M, Zhang Q, Hu W, et al., 2021, The novel mechanisms 95. Isaacson A, Swioklo S, Connon CJ, 2018, 3D bioprinting of a
and applications of exosomes in dermatology and cutaneous corneal stroma equivalent. Exp Eye Res, 173: 188–193.
medical aesthetics. Pharmacol Res, 166: 105490.
https://doi.org/10.1016/j.exer.2018.05.010
https://doi.org/10.1016/j.phrs.2021.105490
96. Ji L, Bao L, Gu Z, et al., 2019, Comparison of
85. Wang WM, Wu C, Jin HZ, 2019, Exosomes in chronic immunomodulatory properties of exosomes derived from
inflammatory skin diseases and skin tumors. Exp Dermatol, bone marrow mesenchymal stem cells and dental pulp stem
28: 213–218.
cells. Immunol Res, 67: 432–442.
https://doi.org/10.1111/exd.13857
https://doi.org/10.1007/s12026-019-09088-6
86. Griffiths CEM, Cumberbatch M, Tucker SC, et al., 2001, 97. Wei J, Song Y, Du Z, et al., 2020, Exosomes derived from human
Exogenous topical lactoferrin inhibits allergen-induced exfoliated deciduous teeth ameliorate adult bone loss in mice
Langerhans cell migration and cutaneous inflammation in through promoting osteogenesis. J Mol Histol, 51: 455–466.
humans. Br J Dermatol, 144: 715–725.
https://doi.org/10.1007/s10735-020-09896-3
https://doi.org/10.1046/j.1365-2133.2001.04125.x
98. Tian Y, Liu M, Liu Y, et al., 2021, The performance of 3D
87. An Y, Lin S, Tan X, et al., 2021, Exosomes from adipose- bioscaffolding based on a human periodontal ligament stem cell
derived stem cells and application to skin wound healing. printing technique. J Biomed Mater Res Part A, 109: 1209–1219.
Cell Prolif, 54: e12993.
https://doi.org/10.1002/jbm.a.37114
https://doi.org/10.1111/cpr.12993
99. Gómez-Guillén MC, Giménez B, López-Caballero ME,
88. Shi A, Li J, Qiu X, et al., 2021, TGF-β loaded exosome et al., Functional and bioactive properties of collagen and
enhances ischemic wound healing in vitro and in vivo. gelatin from alternative sources: A review. Food Hydrocoll,
Theranostics, 11: 6616–6631.
25: 1813–1827.
https://doi.org/10.7150/thno.57701
https://doi.org/10.1016/j.foodhyd.2011.02.007
89. Holl J, Kowalewski C, Zimek Z, et al., 2021, Chronic diabetic 100. Rowley JA, Madlambayan G, Mooney DJ, 1999, Alginate
wounds and their treatment with skin substitutes. Cells, hydrogels as synthetic extracellular matrix materials.
10(3): 655.
Biomaterials, 20: 45–53.
https://doi.org/10.3390/cells10030655
https://doi.org/10.1016/S0142-9612(98)00107-0
90. Wang M, Wang C, Chen M, et al., 2019, Efficient angiogenesis-
based diabetic wound healing/skin reconstruction through 101. Norotte C, Marga FS, Niklason LE, et al., 2009, Scaffold-free
vascular tissue engineering using bioprinting. Biomaterials,
bioactive antibacterial adhesive ultraviolet shielding 30: 5910–5917.
nanodressing with exosome release. ACS Nano, 13:
10279–10293. https://doi.org/10.1016/j.biomaterials.2009.06.034
https://doi.org/10.1021/acsnano.9b03656 102. Billiet T, Vandenhaute M, Schelfhout J, et al., 2012, A review
of trends and limitations in hydrogel-rapid prototyping for
91. Huang J, Xiong J, Yang L, et al., 2021, Cell-free exosome-
laden scaffolds for tissue repair. Nanoscale, 13: 8740–8750. tissue engineering. Biomaterials, 33: 6020–6041.
https://doi.org/10.1016/j.biomaterials.2012.04.050
https://doi.org/10.1039/d1nr01314a
103. Samanta S, Rajasingh S, Drosos N, et al., 2018, Exosomes:
92. Samaeekia R, Rabiee B, Putra I, et al., 2018, Effect of human
corneal mesenchymal stromal cell-derived exosomes on New molecular targets of diseases. Acta Pharmacologica
corneal epithelial wound healing. Invest Ophthalmol Vis Sci, Sinica, 39: 501–513.
59: 5194–5200. https://doi.org/10.1038/aps.2017.162
https://doi.org/10.1167/iovs.18-24803 104. Kishore R, Khan M, 2017, Cardiac cell-derived exosomes:
Changing face of regenerative biology. Eur Heart J, 38: 212–215.
93. Shojaati G, Khandaker I, Funderburgh ML, et al., 2019,
Mesenchymal stem cells reduce corneal fibrosis and https://doi.org/10.1093/eurheartj/ehw324
Volume 9 Issue 6 (2023) 130 https://doi.org/10.36922/ijb.0114

