Page 138 - IJB-9-6
P. 138

International Journal of Bioprinting                                   Exosome-based bioink for bioprinting




            82.  Sun BK, Siprashvili Z, Khavari PA, 2014, Advances in skin   inflammation via extracellular vesicle-mediated delivery of
               grafting and treatment of cutaneous wounds. Science, 346:   miRNA. Stem Cells Transl Med, 8: 1192–1201.
               941–945.
                                                                  https://doi.org/10.1002/sctm.18-0297
               https://doi.org/10.1126/science.1253836
                                                               94.  Sorkio A, Koch L, Koivusalo L, et al., 2018, Human stem cell
            83.  Avci P, Gupta A, Sadasivam M, et al., 2013, Low-level   based corneal tissue mimicking structures using laser-assisted
               laser (light) therapy (LLLT) in skin: Stimulating, healing,   3D bioprinting and functional bioinks. Biomaterials, 171: 57–71.
               restoring. Semin Cutan Med Surg, 32: 41–52         https://doi.org/10.1016/j.biomaterials.2018.04.034
            84.  Xiong M, Zhang Q, Hu W, et al., 2021, The novel mechanisms   95.  Isaacson A, Swioklo S, Connon CJ, 2018, 3D bioprinting of a
               and applications of exosomes in dermatology and cutaneous   corneal stroma equivalent. Exp Eye Res, 173: 188–193.
               medical aesthetics. Pharmacol Res, 166: 105490.
                                                                  https://doi.org/10.1016/j.exer.2018.05.010
               https://doi.org/10.1016/j.phrs.2021.105490
                                                               96.  Ji L, Bao L, Gu Z, et al., 2019, Comparison of
            85.  Wang  WM,  Wu  C,  Jin  HZ,  2019,  Exosomes  in  chronic   immunomodulatory properties of exosomes derived from
               inflammatory skin diseases and skin tumors. Exp Dermatol,   bone marrow mesenchymal stem cells and dental pulp stem
               28: 213–218.
                                                                  cells. Immunol Res, 67: 432–442.
               https://doi.org/10.1111/exd.13857
                                                                  https://doi.org/10.1007/s12026-019-09088-6
            86.  Griffiths CEM, Cumberbatch M, Tucker SC, et al., 2001,   97.  Wei J, Song Y, Du Z, et al., 2020, Exosomes derived from human
               Exogenous topical lactoferrin inhibits allergen-induced   exfoliated deciduous teeth ameliorate adult bone loss in mice
               Langerhans cell migration and cutaneous inflammation in   through promoting osteogenesis. J Mol Histol, 51: 455–466.
               humans. Br J Dermatol, 144: 715–725.
                                                                  https://doi.org/10.1007/s10735-020-09896-3
               https://doi.org/10.1046/j.1365-2133.2001.04125.x
                                                               98.  Tian Y, Liu M, Liu Y, et al., 2021, The performance of 3D
            87.  An Y, Lin S, Tan X, et al., 2021, Exosomes from adipose-  bioscaffolding based on a human periodontal ligament stem cell
               derived stem cells and application to skin wound healing.   printing technique. J Biomed Mater Res Part A, 109: 1209–1219.
               Cell Prolif, 54: e12993.
                                                                  https://doi.org/10.1002/jbm.a.37114
               https://doi.org/10.1111/cpr.12993
                                                               99.  Gómez-Guillén MC, Giménez B, López-Caballero ME,
            88.  Shi A, Li J, Qiu X, et al., 2021, TGF-β loaded exosome   et al., Functional and bioactive properties of collagen and
               enhances ischemic wound healing in vitro and in vivo.   gelatin from alternative sources: A review. Food Hydrocoll,
               Theranostics, 11: 6616–6631.
                                                                  25: 1813–1827.
               https://doi.org/10.7150/thno.57701
                                                                  https://doi.org/10.1016/j.foodhyd.2011.02.007
            89.  Holl J, Kowalewski C, Zimek Z, et al., 2021, Chronic diabetic   100. Rowley JA, Madlambayan G, Mooney DJ, 1999, Alginate
               wounds and their treatment with skin substitutes.  Cells,   hydrogels as synthetic extracellular matrix materials.
               10(3): 655.
                                                                  Biomaterials, 20: 45–53.
               https://doi.org/10.3390/cells10030655
                                                                  https://doi.org/10.1016/S0142-9612(98)00107-0
            90.  Wang M, Wang C, Chen M, et al., 2019, Efficient angiogenesis-
               based  diabetic  wound  healing/skin  reconstruction  through   101. Norotte C, Marga FS, Niklason LE, et al., 2009, Scaffold-free
                                                                  vascular tissue engineering using bioprinting. Biomaterials,
               bioactive  antibacterial  adhesive  ultraviolet  shielding  30: 5910–5917.
               nanodressing with exosome release.  ACS Nano, 13:
               10279–10293.                                       https://doi.org/10.1016/j.biomaterials.2009.06.034
               https://doi.org/10.1021/acsnano.9b03656         102. Billiet T, Vandenhaute M, Schelfhout J, et al., 2012, A review
                                                                  of trends and limitations in hydrogel-rapid prototyping for
            91.  Huang J, Xiong J, Yang L, et al., 2021, Cell-free exosome-
               laden scaffolds for tissue repair. Nanoscale, 13: 8740–8750.  tissue engineering. Biomaterials, 33: 6020–6041.
                                                                  https://doi.org/10.1016/j.biomaterials.2012.04.050
               https://doi.org/10.1039/d1nr01314a
                                                               103. Samanta S, Rajasingh S, Drosos N, et al., 2018, Exosomes:
            92.  Samaeekia R, Rabiee B, Putra I, et al., 2018, Effect of human
               corneal mesenchymal stromal cell-derived exosomes on   New  molecular  targets  of  diseases.  Acta Pharmacologica
               corneal epithelial wound healing. Invest Ophthalmol Vis Sci,   Sinica, 39: 501–513.
               59: 5194–5200.                                     https://doi.org/10.1038/aps.2017.162
               https://doi.org/10.1167/iovs.18-24803           104.  Kishore R, Khan M, 2017, Cardiac cell-derived exosomes:
                                                                  Changing face of regenerative biology. Eur Heart J, 38: 212–215.
            93.  Shojaati G, Khandaker I, Funderburgh ML, et al., 2019,
               Mesenchymal stem cells reduce corneal fibrosis and   https://doi.org/10.1093/eurheartj/ehw324


            Volume 9 Issue 6 (2023)                        130                         https://doi.org/10.36922/ijb.0114
   133   134   135   136   137   138   139   140   141   142   143