Page 313 - IJB-9-6
P. 313

International Journal of Bioprinting                                Progress in bioprinted ear reconstruction




               forearm prelaminated flap assisted by 3D surface imaging   13.  Nagata  S,  Maruyama  S,  2022,  Auricular  reconstruction
               and 3D printing. Plast Reconstr Surg - Glob Open, 10: e4580.  Nagata method. Nagata Microtia and Reconstructive Plastic
                                                                  Surgery Clinic.
               https://10.1097/gox.0000000000004580
            3.   Apelgren P, Amoroso M, Säljö K, et al., 2018, Skin grafting      https://www.nagata-microtia.com/method.html (accessed
               on 3D bioprinted cartilage constructs in vivo. Plast Reconstr   November 26, 2022).
               Surg - Glob Open, 6: e1930.                     14.  Xia H, Zhao D, Zhu H, et al., 2018, Lyophilized scaffolds
               https://10.1097/gox.0000000000001930               fabricated from 3D-printed photocurable natural hydrogel
                                                                  for Cartilage Regeneration.  ACS Appl Mater Interfaces,
            4.   Brennan JR, Cornett A, Chang B,  et al., 2021, Preclinical   10(35): 31704–31715.
               assessment  of  clinically  streamlined,  3d‐printed,
               biocompatible single‐ and two‐stage tissue scaffolds for   https://10.1021/acsami.8b10926
               ear reconstruction.  J Biomed Mater Res Part B, 109(3):    15.  Tang  P,  Song  P,  Peng  Z,  et al.,  2021,  Chondrocyte-laden
               394–400.                                           Gelma hydrogel combined with 3D printed PLA scaffolds
               https://10.1002/jbm.b.34707                        for auricle regeneration. Mater Sci Eng C, 130: 112423.
            5.   Jovic TH, Stewart K, Kon M,  et al., 2020, Auricular   https://10.1016/j.msec.2021.112423
               reconstruction:  A  sociocultural,  surgical  and  scientific   16.  Roopavath UK, Kalaskar DM, 2022, Introduction to
               perspective. J Plast Reconstr Aesthet Surg, 73(8): 1424–1433.  three-dimensional printing in medicine, in 3D Printing in
               https://10.1016/j.bjps.2020.03.025                 Medicine. Woodhead Publishing, Cambridge 1–27.
            6.   Horlock N, Vögelin E, Bradbury ET, et al., 2005, Psychosocial   https://10.1016/B978-0-323-89831-7.00008-0
               outcome of patients after ear reconstruction. Ann Plast Surg,   17.  Berens AM, Newman S, Bhrany AD, et al., 2016, Computer-
               54(5): 517–524.                                    aided design and 3D printing to produce a costal cartilage
               https://10.1097/01.sap.0000155284.96308.32         model for simulation of auricular reconstruction.
                                                                  Otolaryngol Head Neck Surg, 155(2): 356–359.
            7.   Ross MT, Cruz R, Hutchinson C,  et al., 2018, Aesthetic
               reconstruction of microtia: A review of current techniques   https://10.1177/0194599816639586
               and new 3D printing approaches.  Virtual Phys Prototyp,   18.  Hong  CJ,  Giannopoulos  AA,  Hong  BY,  et  al.,  2019,
               13(2): 117–130.
                                                                  Clinical applications of three‐dimensional printing in
               https://10.1080/17452759.2018.1430246              otolaryngology–head and neck surgery: A systematic
                                                                  review. The Laryngoscope, 129(8): 2045–2052.
            8.   Jang CH, Koo YW, Kim GH, 2020, ASC/chondrocyte-laden
               alginate hydrogel/PCL hybrid scaffold fabricated using 3D   https://10.1002/lary.27831
               printing for auricle regeneration. Carbohyd Polym, 248: 116776.
                                                               19.  Beckers O, Coppey E, Mommaerts MY, 2021, Computer-
               https://10.1016/j.carbpol.2020.116776              aided design and manufacturing construction of a pilot
            9.   Chung JH, Kade JC, Jeiranikhameneh A,  et al., 2020,   guide for a bone-anchored epithesis to replace an absent
               3D  hybrid  printing  platform for  auricular  cartilage   pinna. Int J Oral Maxillofac Surg, 50(7): 815–819.
               reconstruction. Biomed Phys Eng Express, 6: 035003.  https://10.1016/j.ijom.2020.10.006
               https://10.1088/2057-1976/ab54a7                20.  Zhou G, Jiang H, Yin Z, et al., 2018, In vitro regeneration
            10.  Dong X, Premaratne ID, Bernstein JL, et al., 2021, Three-  of patient-specific ear-shaped cartilage and its first clinical
               dimensional-printed external scaffolds mitigate loss of   application for auricular reconstruction.  EBioMedicine,
               volume and topography in engineered elastic cartilage   28(2): 287–302.
               constructs. Cartilage, 13(1).                      https://10.1016/j.ebiom.2018.01.011
               https://10.1177/19476035211049556               21.  Mukherjee P, Chung J, Cheng K, et al., 2021, In vitro and in
            11.  Jia L, Hua Y, Zeng J, et al., 2022, Bioprinting and regeneration   vivo study of PCL-hydrogel scaffold to advance bioprinting
               of auricular cartilage using a bioactive bioink based on   translation in microtia reconstruction.  J Craniofac Surg,
               microporous photocrosslinkable acellular cartilage matrix.   32(5): 1931–1936.
               Bioact Mater, 16: 66–81.                           https://10.1097/scs.0000000000007173
               https://10.1016/j.bioactmat.2022.02.032         22.  Yin  Z, Li  D,  Liu  Y,  et al.,  2020, Regeneration  of  elastic
            12.  Justicz N, Dusseldorp JR, Shaye D, 2017, Firmin technique   cartilage with accurate human-ear shape based on PCL
               for microtia reconstruction.  Oper Tech Otolaryngol Head   strengthened biodegradable scaffold and expanded microtia
               Neck Surg, 28(2): 90–96.                           chondrocytes. Appl Mater Today, 20: 100724.
               https://10.1016/j.otot.2017.03.005                 https://10.1016/j.apmt.2020.100724


            Volume 9 Issue 6 (2023)                        305                        https://doi.org/10.36922/ijb.0898
   308   309   310   311   312   313   314   315   316   317   318