Page 330 - IJB-9-6
P. 330

International Journal of Bioprinting                              Rheology-informed machine learning model




            9.   Mao X, Wang Z, 2022, Research progress of three-  21.  Datta P, Barui A, Wu Y,  et al., 2018, Essential steps in
               dimensional bioprinting artificial cardiac tissue. Tissue Eng   bioprinting: From pre-to post-bioprinting. Biotechnol Adv,
               Regen Med, 20: 1–9.                                36(5): 1481–1504.
               https://doi.org/10.1007/s13770-022-00495-9         https://doi.org/10.1016/j.biotechadv.2018.06.003
            10.  Jacob  GT,  Passamai  VE,  Katz  S,  et al.,  2022,  Hydrogels   22.  Sarker M, Naghieh S, McInnes AD,  et al., 2019, Bio-
               for extrusion-based bioprinting: general considerations.   fabrication  of  peptide-modified  alginate  scaffolds:
               Bioprinting, 27: e00212.                           Printability, mechanical stability and neurite outgrowth
               https://doi.org/10.1016/j.bprint.2022.e00212       assessments. Bioprinting, 14: e00045.
            11.  Merceron TK, Burt M, Seol Y-J, et al., 2015, A 3D bioprinted   https://doi.org/10.1016/j.bprint.2019.e00045
               complex structure for engineering the muscle–tendon unit.   23.  Gillispie G, Prim P, Copus J,  et al., 2020, Assessment
               Biofabrication, 7(3): 035003.                      methodologies for extrusion-based bioink printability.
                                                                  Biofabrication, 12(2): 022003.
               http://dx.doi.org/10.1088/1758-5090/7/3/035003
                                                                  https://doi.org/10.1088/1758-5090/ab6f0d
            12.  Melchels  FP,  Dhert  WJ,  Hutmacher  DW,  et al.,  2014,
               Development and characterisation of a new bioink for additive   24.  Schwab A, Levato R, D’Este M,  et al., 2020, Printability
               tissue manufacturing. J Mater Chem B, 2(16): 2282–2289.  and shape fidelity of bioinks in 3D bioprinting. Chem Rev,
                                                                  120(19): 11028–11055.
               https://doi.org/10.1039/C3TB21280G
                                                                  https://doi.org/10.1021/acs.chemrev.0c00084
            13.  Ozbolat IT, Hospodiuk M, 2016, Current advances and
               future  perspectives  in extrusion-based bioprinting.   25.  Malekpour A, Chen X, 2022, Printability and cell viability in
               Biomaterials, 76: 321–343.                         extrusion-based bioprinting from experimental, computational,
                                                                  and machine learning views. J Funct Biomater, 13(2): 40.
               https://doi.org/10.1016/j.biomaterials.2015.10.076
                                                                  https://doi.org/10.3390/jfb13020040
            14.  Zhang YS, Haghiashtiani G, Hübscher T,  et al., 2021, 3D
               extrusion bioprinting. Nat Rev Methods Primers, 1(1): 75.  26.  Ramesh S, Harrysson OL, Rao PK, et al., 2021, Extrusion
                                                                  bioprinting: Recent progress, challenges, and future
               https://doi.org/10.1038/s43586-021-00073-8         opportunities. Bioprinting, 21: e00116.
            15.  Ning L, Chen X, 2017, A brief review of extrusion‐based   https://doi.org/10.1016/j.bprint.2020.e00116
               tissue scaffold bio‐printing. Biotechnol J, 12(8): 1600671.
                                                               27.  Kang K,  Hockaday  L, Butcher J,  2013, Quantitative
               https://doi.org/10.1002/biot.201600671             optimization of solid freeform deposition of aqueous
            16.  Xuan Z, Peng Q, Larsen T, et al., 2023, Tailoring hydrogel   hydrogels. Biofabrication, 5(3): 035001.
               composition and stiffness to control smooth muscle cell   http://dx.doi.org/10.1088/1758-5082/5/3/035001
               differentiation in bioprinted constructs.  Tissue Eng Regen
               Med, 20(2): 199–212.                            28.  Tian S, Zhao H, Lewinski N, 2021, Key parameters and
                                                                  applications of extrusion-based bioprinting. Bioprinting, 23:
               https://doi.org/10.1007/s13770-022-00500-1         e00156.
            17.  Willson K, Ke D, Kengla C,  et al., 2020, Extrusion-based   https://doi.org/10.1016/j.bprint.2021.e00156
               bioprinting: Current standards and relevancy for human-  29.  Naghieh S, Chen X, 2021, Printability–A key issue in
               sized tissue fabrication. Methods Mol Biol, 2140: 65–92.
                                                                  extrusion-based bioprinting. J Pharm Anal, 11(5): 564–579.
               https://doi.org/10.1007/978-1-0716-0520-2          https://doi.org/10.1016/j.jpha.2021.02.001
            18.  Hölzl K, Lin S, Tytgat L,  et al., 2016, Bioink properties   30.  Fu Z, Naghieh S, Xu C, et al., 2021, Printability in extrusion
               before, during and after 3D bioprinting. Biofabrication, 8(3):   bioprinting. Biofabrication, 13(3): 033001.
               032002.
                                                                  https://doi.org/10.1088/1758-5090/abe7ab
               http://dx.doi.org/10.1088/1758-5090/8/3/032002
                                                               31.  Lee H, Yoo JM, Ponnusamy NK,  et al., 2022, 3D-printed
            19.  Chung JH, Naficy S, Yue Z, et al., 2013, Bio-ink properties   hydroxyapatite/gelatin bone scaffolds reinforced with
               and printability for extrusion printing living cells. Biomater   graphene oxide: Optimized fabrication and mechanical
               Sci, 1(7): 763–773.                                characterization. Ceram Int, 48(7): 10155–10163.
               https://doi.org/10.1039/C3BM00012E                 https://doi.org/10.1016/j.ceramint.2021.12.227
            20.  Jin Y, Chai W, Huang Y, 2017, Printability study of hydrogel   32.  Kim MH, Nam SY, 2020, Assessment of coaxial printability
               solution extrusion in nanoclay yield-stress bath during printing-  for extrusion-based bioprinting of alginate-based tubular
               then-gelation biofabrication. Mater Sci Eng C, 80: 313–325.  constructs. Bioprinting, 20: e00092.
               https://doi.org/10.1016/j.msec.2017.05.144         https://doi.org/10.1016/j.bprint.2020.e00092


            Volume 9 Issue 6 (2023)                        322                          https://doi.org/10.36922/ijb.1280
   325   326   327   328   329   330   331   332   333   334   335