Page 330 - IJB-9-6
P. 330
International Journal of Bioprinting Rheology-informed machine learning model
9. Mao X, Wang Z, 2022, Research progress of three- 21. Datta P, Barui A, Wu Y, et al., 2018, Essential steps in
dimensional bioprinting artificial cardiac tissue. Tissue Eng bioprinting: From pre-to post-bioprinting. Biotechnol Adv,
Regen Med, 20: 1–9. 36(5): 1481–1504.
https://doi.org/10.1007/s13770-022-00495-9 https://doi.org/10.1016/j.biotechadv.2018.06.003
10. Jacob GT, Passamai VE, Katz S, et al., 2022, Hydrogels 22. Sarker M, Naghieh S, McInnes AD, et al., 2019, Bio-
for extrusion-based bioprinting: general considerations. fabrication of peptide-modified alginate scaffolds:
Bioprinting, 27: e00212. Printability, mechanical stability and neurite outgrowth
https://doi.org/10.1016/j.bprint.2022.e00212 assessments. Bioprinting, 14: e00045.
11. Merceron TK, Burt M, Seol Y-J, et al., 2015, A 3D bioprinted https://doi.org/10.1016/j.bprint.2019.e00045
complex structure for engineering the muscle–tendon unit. 23. Gillispie G, Prim P, Copus J, et al., 2020, Assessment
Biofabrication, 7(3): 035003. methodologies for extrusion-based bioink printability.
Biofabrication, 12(2): 022003.
http://dx.doi.org/10.1088/1758-5090/7/3/035003
https://doi.org/10.1088/1758-5090/ab6f0d
12. Melchels FP, Dhert WJ, Hutmacher DW, et al., 2014,
Development and characterisation of a new bioink for additive 24. Schwab A, Levato R, D’Este M, et al., 2020, Printability
tissue manufacturing. J Mater Chem B, 2(16): 2282–2289. and shape fidelity of bioinks in 3D bioprinting. Chem Rev,
120(19): 11028–11055.
https://doi.org/10.1039/C3TB21280G
https://doi.org/10.1021/acs.chemrev.0c00084
13. Ozbolat IT, Hospodiuk M, 2016, Current advances and
future perspectives in extrusion-based bioprinting. 25. Malekpour A, Chen X, 2022, Printability and cell viability in
Biomaterials, 76: 321–343. extrusion-based bioprinting from experimental, computational,
and machine learning views. J Funct Biomater, 13(2): 40.
https://doi.org/10.1016/j.biomaterials.2015.10.076
https://doi.org/10.3390/jfb13020040
14. Zhang YS, Haghiashtiani G, Hübscher T, et al., 2021, 3D
extrusion bioprinting. Nat Rev Methods Primers, 1(1): 75. 26. Ramesh S, Harrysson OL, Rao PK, et al., 2021, Extrusion
bioprinting: Recent progress, challenges, and future
https://doi.org/10.1038/s43586-021-00073-8 opportunities. Bioprinting, 21: e00116.
15. Ning L, Chen X, 2017, A brief review of extrusion‐based https://doi.org/10.1016/j.bprint.2020.e00116
tissue scaffold bio‐printing. Biotechnol J, 12(8): 1600671.
27. Kang K, Hockaday L, Butcher J, 2013, Quantitative
https://doi.org/10.1002/biot.201600671 optimization of solid freeform deposition of aqueous
16. Xuan Z, Peng Q, Larsen T, et al., 2023, Tailoring hydrogel hydrogels. Biofabrication, 5(3): 035001.
composition and stiffness to control smooth muscle cell http://dx.doi.org/10.1088/1758-5082/5/3/035001
differentiation in bioprinted constructs. Tissue Eng Regen
Med, 20(2): 199–212. 28. Tian S, Zhao H, Lewinski N, 2021, Key parameters and
applications of extrusion-based bioprinting. Bioprinting, 23:
https://doi.org/10.1007/s13770-022-00500-1 e00156.
17. Willson K, Ke D, Kengla C, et al., 2020, Extrusion-based https://doi.org/10.1016/j.bprint.2021.e00156
bioprinting: Current standards and relevancy for human- 29. Naghieh S, Chen X, 2021, Printability–A key issue in
sized tissue fabrication. Methods Mol Biol, 2140: 65–92.
extrusion-based bioprinting. J Pharm Anal, 11(5): 564–579.
https://doi.org/10.1007/978-1-0716-0520-2 https://doi.org/10.1016/j.jpha.2021.02.001
18. Hölzl K, Lin S, Tytgat L, et al., 2016, Bioink properties 30. Fu Z, Naghieh S, Xu C, et al., 2021, Printability in extrusion
before, during and after 3D bioprinting. Biofabrication, 8(3): bioprinting. Biofabrication, 13(3): 033001.
032002.
https://doi.org/10.1088/1758-5090/abe7ab
http://dx.doi.org/10.1088/1758-5090/8/3/032002
31. Lee H, Yoo JM, Ponnusamy NK, et al., 2022, 3D-printed
19. Chung JH, Naficy S, Yue Z, et al., 2013, Bio-ink properties hydroxyapatite/gelatin bone scaffolds reinforced with
and printability for extrusion printing living cells. Biomater graphene oxide: Optimized fabrication and mechanical
Sci, 1(7): 763–773. characterization. Ceram Int, 48(7): 10155–10163.
https://doi.org/10.1039/C3BM00012E https://doi.org/10.1016/j.ceramint.2021.12.227
20. Jin Y, Chai W, Huang Y, 2017, Printability study of hydrogel 32. Kim MH, Nam SY, 2020, Assessment of coaxial printability
solution extrusion in nanoclay yield-stress bath during printing- for extrusion-based bioprinting of alginate-based tubular
then-gelation biofabrication. Mater Sci Eng C, 80: 313–325. constructs. Bioprinting, 20: e00092.
https://doi.org/10.1016/j.msec.2017.05.144 https://doi.org/10.1016/j.bprint.2020.e00092
Volume 9 Issue 6 (2023) 322 https://doi.org/10.36922/ijb.1280

