Page 367 - IJB-9-6
P. 367

International Journal of Bioprinting                                   Surface modification of PCL scaffolds




            13.  Daghrery A, Ferreira JA, De Souza Araújo IJ, et al., 2021, A   24.  Zhou Q, Zhang H, Zhou Y,  et  al., 2017, Alkali-mediated
               highly ordered, nanostructured fluorinated CaP-coated melt   miscibility of  gelatin/polycaprolactone  for  electrospinning
               electrowritten scaffold for periodontal tissue regeneration.   homogeneous composite nanofibers for tissue scaffolding.
               Adv Healthc Mater, 10(21): e2101152.               Macromol Biosci, 17(12).
               https://doi.org/10.1002/adhm.202101152             https://doi.org/10.1002/mabi.201700268
            14.  Santschi MXT, Huber S, Bujalka J, et al., 2022, Mechanical   25.  Zheng R, Duan H, Xue J,  et al., 2014, The influence of
               and   biological  evaluation  of  melt-electrowritten  Gelatin/PCL ratio and 3-D construct shape of electrospun
               polycaprolactone scaffolds for acetabular labrum restoration.   membranes on cartilage regeneration. Biomaterials, 35(1):
               Cells, 11(21): 3450.                               152–164.
               https://doi.org/10.3390/cells11213450              https://doi.org/10.1016/j.biomaterials.2013.09.082
            15.  Eichholz KF, Freeman FE, Pitacco P, et al., 2022, Scaffold   26.  Jing X, Mi HY, Wang XC, et al., 2015, Shish-kebab-structured
               microarchitecture  regulates  angiogenesis  and  the  poly(ε-caprolactone) nanofibers hierarchically decorated
               regeneration of large bone defects. Biofabrication, 14(4).  with chitosan-poly(ε-caprolactone) copolymers for bone
                                                                  tissue engineering. ACS Appl Mater Interfaces, 7(12): 6955–
               https://doi.org/10.1088/1758-5090/ac88a1
                                                                  6965.
            16.  Steele JaM, Moore AC, St-Pierre JP, et al., 2022, In vitro and
               in vivo investigation of a zonal microstructured scaffold for   https://doi.org/10.1021/acsami.5b00900
               osteochondral defect repair. Biomaterials, 286: 121548.  27.  Jin S, Yang R, Chu C,  et al., 2021, Topological structure
                                                                  of electrospun membrane regulates immune response,
               https://doi.org/10.1016/j.biomaterials.2022.121548
                                                                  angiogenesis and bone regeneration.  Acta Biomater, 129:
            17.  Abbasi N, Lee RSB, Ivanovski S, et al., 2020, In vivo bone   148–158.
               regeneration assessment of offset and gradient melt
               electrowritten (MEW) PCL scaffolds. Biomater Res, 24: 17.  https://doi.org/10.1016/j.actbio.2021.05.042
                                                               28.  Hao M, Liu Y, Chen Z, et al., 2022, Cross-linked gamma
               https://doi.org/10.1186/s40824-020-00196-1
                                                                  polyglutamic acid/human hair keratin electrospun
            18.  Daghrery A, De Souza Araújo IJ, Castilho M, et al., 2023,   nanofibrous scaffolds with excellent biocompatibility and
               Unveiling the potential of melt electrowriting in regenerative   biodegradability. Polymers (Basel), 14(24): 5505.
               dental medicine. Acta Biomater, 156: 88–109.
                                                                  https://doi.org/10.3390/polym14245505
               https://doi.org/10.1016/j.actbio.2022.01.010
                                                               29.  Crowder SW, Leonardo V, Whittaker T, et al., 2016, Material
            19.  Jing L, Wang X, Leng B,  et al., 2021, Engineered   cues as potent regulators of epigenetics and stem cell
               nanotopography on the microfibers of 3D-printed PCL   function. Cell Stem Cell, 18(1): 39–52.
               scaffolds to modulate cellular responses and establish an in   https://doi.org/10.1016/j.stem.2015.12.012
               vitro tumor model. ACS Appl Bio Mater, 4(2): 1381–1394.
                                                               30.  Lv L, Tang Y, Zhang P, et al., 2018, Biomaterial cues regulate
               https://doi.org/10.1021/acsabm.0c01243
                                                                  epigenetic state and cell functions-A systematic review.
            20.  Meng J, Boschetto F, Yagi S,  et al., 2022, Enhancing   Tissue Eng Part B Rev, 24(2): 112–132.
               the bioactivity of melt electrowritten PLLA scaffold by   https://doi.org/10.1089/ten.teb.2017.0287
               convenient, green, and effective hydrophilic surface
               modification. Mater Sci Eng C Mater Biol Appl, 135: 112686.  31.  Veiseh O, Doloff JC, Ma M, et al., 2015, Size- and shape-
                                                                  dependent foreign body immune response to materials
               https://doi.org/10.1016/j.msec.2022.112686
                                                                  implanted in rodents and non-human primates. Nat Mater,
            21.  Rasperini G, Pilipchuk SP, Flanagan CL,  et al., 2015,   14(6): 643–651.
               3D-printed bioresorbable scaffold for periodontal repair.    https://doi.org/10.1038/nmat4290
               J Dent Res, 94: 153s–157s.
                                                               32.  Leal-Egaña A, Díaz-Cuenca A, Boccaccini AR, 2013, Tuning
               https://doi.org/10.1177/0022034515588303
                                                                  of cell-biomaterial anchorage for tissue regeneration.  Adv
            22.  Wong HM, Wu S, Chu PK,  et  al., 2013, Low-modulus   Mater, 25(29): 4049–4057.
               Mg/PCL hybrid bone substitute for osteoporotic fracture   https://doi.org/10.1002/adma.201301227
               fixation. Biomaterials, 34(29): 7016–7032.
                                                               33.  Yeo A, Wong WJ, Teoh SH, 2010, Surface modification of
               https://doi.org/10.1016/j.biomaterials.2013.05.062
                                                                  PCL-TCP scaffolds in rabbit calvaria defects: Evaluation
            23.  Feng B, Tu H, Yuan H,  et al., 2012, Acetic-acid-mediated   of scaffold degradation profile, biomechanical properties
               miscibility toward electrospinning homogeneous composite   and bone healing patterns.  J Biomed Mater Res A, 93(4):
               nanofibers of GT/PCL. Biomacromolecules, 13(12): 3917–3925.  1358–1367.
               https://doi.org/10.1021/bm3009389                  https://doi.org/10.1002/jbm.a.32633


            Volume 9 Issue 6 (2023)                        359                          https://doi.org/10.36922/ijb.1071
   362   363   364   365   366   367   368   369   370   371   372