Page 367 - IJB-9-6
P. 367
International Journal of Bioprinting Surface modification of PCL scaffolds
13. Daghrery A, Ferreira JA, De Souza Araújo IJ, et al., 2021, A 24. Zhou Q, Zhang H, Zhou Y, et al., 2017, Alkali-mediated
highly ordered, nanostructured fluorinated CaP-coated melt miscibility of gelatin/polycaprolactone for electrospinning
electrowritten scaffold for periodontal tissue regeneration. homogeneous composite nanofibers for tissue scaffolding.
Adv Healthc Mater, 10(21): e2101152. Macromol Biosci, 17(12).
https://doi.org/10.1002/adhm.202101152 https://doi.org/10.1002/mabi.201700268
14. Santschi MXT, Huber S, Bujalka J, et al., 2022, Mechanical 25. Zheng R, Duan H, Xue J, et al., 2014, The influence of
and biological evaluation of melt-electrowritten Gelatin/PCL ratio and 3-D construct shape of electrospun
polycaprolactone scaffolds for acetabular labrum restoration. membranes on cartilage regeneration. Biomaterials, 35(1):
Cells, 11(21): 3450. 152–164.
https://doi.org/10.3390/cells11213450 https://doi.org/10.1016/j.biomaterials.2013.09.082
15. Eichholz KF, Freeman FE, Pitacco P, et al., 2022, Scaffold 26. Jing X, Mi HY, Wang XC, et al., 2015, Shish-kebab-structured
microarchitecture regulates angiogenesis and the poly(ε-caprolactone) nanofibers hierarchically decorated
regeneration of large bone defects. Biofabrication, 14(4). with chitosan-poly(ε-caprolactone) copolymers for bone
tissue engineering. ACS Appl Mater Interfaces, 7(12): 6955–
https://doi.org/10.1088/1758-5090/ac88a1
6965.
16. Steele JaM, Moore AC, St-Pierre JP, et al., 2022, In vitro and
in vivo investigation of a zonal microstructured scaffold for https://doi.org/10.1021/acsami.5b00900
osteochondral defect repair. Biomaterials, 286: 121548. 27. Jin S, Yang R, Chu C, et al., 2021, Topological structure
of electrospun membrane regulates immune response,
https://doi.org/10.1016/j.biomaterials.2022.121548
angiogenesis and bone regeneration. Acta Biomater, 129:
17. Abbasi N, Lee RSB, Ivanovski S, et al., 2020, In vivo bone 148–158.
regeneration assessment of offset and gradient melt
electrowritten (MEW) PCL scaffolds. Biomater Res, 24: 17. https://doi.org/10.1016/j.actbio.2021.05.042
28. Hao M, Liu Y, Chen Z, et al., 2022, Cross-linked gamma
https://doi.org/10.1186/s40824-020-00196-1
polyglutamic acid/human hair keratin electrospun
18. Daghrery A, De Souza Araújo IJ, Castilho M, et al., 2023, nanofibrous scaffolds with excellent biocompatibility and
Unveiling the potential of melt electrowriting in regenerative biodegradability. Polymers (Basel), 14(24): 5505.
dental medicine. Acta Biomater, 156: 88–109.
https://doi.org/10.3390/polym14245505
https://doi.org/10.1016/j.actbio.2022.01.010
29. Crowder SW, Leonardo V, Whittaker T, et al., 2016, Material
19. Jing L, Wang X, Leng B, et al., 2021, Engineered cues as potent regulators of epigenetics and stem cell
nanotopography on the microfibers of 3D-printed PCL function. Cell Stem Cell, 18(1): 39–52.
scaffolds to modulate cellular responses and establish an in https://doi.org/10.1016/j.stem.2015.12.012
vitro tumor model. ACS Appl Bio Mater, 4(2): 1381–1394.
30. Lv L, Tang Y, Zhang P, et al., 2018, Biomaterial cues regulate
https://doi.org/10.1021/acsabm.0c01243
epigenetic state and cell functions-A systematic review.
20. Meng J, Boschetto F, Yagi S, et al., 2022, Enhancing Tissue Eng Part B Rev, 24(2): 112–132.
the bioactivity of melt electrowritten PLLA scaffold by https://doi.org/10.1089/ten.teb.2017.0287
convenient, green, and effective hydrophilic surface
modification. Mater Sci Eng C Mater Biol Appl, 135: 112686. 31. Veiseh O, Doloff JC, Ma M, et al., 2015, Size- and shape-
dependent foreign body immune response to materials
https://doi.org/10.1016/j.msec.2022.112686
implanted in rodents and non-human primates. Nat Mater,
21. Rasperini G, Pilipchuk SP, Flanagan CL, et al., 2015, 14(6): 643–651.
3D-printed bioresorbable scaffold for periodontal repair. https://doi.org/10.1038/nmat4290
J Dent Res, 94: 153s–157s.
32. Leal-Egaña A, Díaz-Cuenca A, Boccaccini AR, 2013, Tuning
https://doi.org/10.1177/0022034515588303
of cell-biomaterial anchorage for tissue regeneration. Adv
22. Wong HM, Wu S, Chu PK, et al., 2013, Low-modulus Mater, 25(29): 4049–4057.
Mg/PCL hybrid bone substitute for osteoporotic fracture https://doi.org/10.1002/adma.201301227
fixation. Biomaterials, 34(29): 7016–7032.
33. Yeo A, Wong WJ, Teoh SH, 2010, Surface modification of
https://doi.org/10.1016/j.biomaterials.2013.05.062
PCL-TCP scaffolds in rabbit calvaria defects: Evaluation
23. Feng B, Tu H, Yuan H, et al., 2012, Acetic-acid-mediated of scaffold degradation profile, biomechanical properties
miscibility toward electrospinning homogeneous composite and bone healing patterns. J Biomed Mater Res A, 93(4):
nanofibers of GT/PCL. Biomacromolecules, 13(12): 3917–3925. 1358–1367.
https://doi.org/10.1021/bm3009389 https://doi.org/10.1002/jbm.a.32633
Volume 9 Issue 6 (2023) 359 https://doi.org/10.36922/ijb.1071

