Page 368 - IJB-9-6
P. 368

International Journal of Bioprinting                                   Surface modification of PCL scaffolds




            34.  Tiaw  KS,  Goh  SW,  Hong  M,  et al.,  2005,  Laser  surface   43.  Eichholz KF, Hoey DA, 2018, Mediating human stem
               modification  of poly(epsilon-caprolactone)  (PCL)  membrane   cell  behaviour  via  defined  fibrous  architectures  by  melt
               for tissue engineering applications. Biomaterials, 26(7): 763–769.  electrospinning writing. Acta Biomater, 75: 140–151.
               https://doi.org/10.1016/j.biomaterials.2004.03.010  https://doi.org/10.1016/j.actbio.2018.05.048
            35.  Chen Z, Liu Y, Huang J,  et al., 2022, Enhanced in vitro   44.  Karageorgiou V, Kaplan D, 2005, Porosity of 3D biomaterial
               biocompatible polycaprolactone/nano-hydroxyapatite   scaffolds and osteogenesis. Biomaterials, 26(27): 5474–5491.
               scaffolds with near-field direct-writing melt electrospinning
               technology. J Funct Biomater, 13(4): 161.          https://doi.org/10.1016/j.biomaterials.2005.02.002
               https://doi.org/10.3390/jfb13040161             45.  Tian Y, Zheng H, Zheng G,  et al., 2022, Hierarchical
                                                                  microgroove/nanopore topography regulated cell adhesion
            36.  Chen Z, Hao M, Qian X, et al., 2021, Characterization on   to enhance osseointegration around intraosseous implants
               modification and biocompatibility of PCL scaffold prepared   in vivo. Biomater Sci, 10(2): 560–580.
               with near-field direct-writing melt electrospinning.  Chem
               Res Chin Univ, 37(3): 578–583.                     https://doi.org/10.1039/d1bm01657a
               https://doi.org/10.1007/s40242-021-1129-z       46.  Zhang P, Chen J, Sun Y, et al., 2023, A 3D multifunctional
            37.  Vaquette C, Ivanovski S, Hamlet SM,  et al., 2013, Effect   bi-layer scaffold to regulate stem cell behaviors and promote
               of culture conditions  and calcium  phosphate coating on   osteochondral regeneration. J Mater Chem B, 11(6): 1240–
               ectopic bone formation. Biomaterials, 34(22): 5538–5551.  1261.
               https://doi.org/10.1016/j.biomaterials.2013.03.088  https://doi.org/10.1039/d2tb02203f
            38.  Gupta D, Singh AK, Kar N,  et al., 2019, Modelling and   47.  Shegarfi H, Reikeras O, 2009, Review article: Bone
               optimization of NaOH-etched 3-D printed PCL for enhanced   transplantation and immune response. J Orthop Surg (Hong
               cellular attachment and growth with minimal loss of mechanical   Kong), 17(2): 206–211.
               strength. Mater Sci Eng C Mater Biol Appl, 98: 602–611.
                                                                  https://doi.org/10.1177/230949900901700218
               https://doi.org/10.1016/j.msec.2018.12.084
                                                               48.  Kanchanawong P,  Shtengel  G,  Pasapera  AM,  et al.,  2010,
            39.  Zamani Y, Mohammadi J, Amoabediny G,  et al., 2018,   Nanoscale  architecture  of  integrin-based  cell  adhesions.
               Enhanced osteogenic activity by MC3T3-E1 pre-osteoblasts   Nature, 468(7323): 580–594.
               on chemically surface-modified poly(ε-caprolactone)
               3D-printed scaffolds compared to RGD immobilized   https://doi.org/10.1038/nature09621
               scaffolds. Biomed Mater, 14(1): 015008.         49.  Prasopthum A, Cooper M, Shakesheff KM,  et al., 2019,
               https://doi.org/10.1088/1748-605X/aaeb82           Three-dimensional printed scaffolds with controlled micro-/
                                                                  nanoporous surface topography direct chondrogenic and
            40.  Zhou ZX, Chen YR, Zhang JY, et al., 2020, Facile strategy on   osteogenic differentiation of mesenchymal stem cells. ACS
               hydrophilic  modification  of poly(ε-caprolactone)  scaffolds   Appl Mater Interfaces, 11(21): 18896–18906.
               for assisting tissue-engineered meniscus constructs in vitro.
               Front Pharmacol, 11: 471.                          https://doi.org/10.1021/acsami.9b01472
               https://doi.org/10.3389/fphar.2020.00471        50.  Kumar G, Waters MS, Farooque TM, et al., 2012, Freeform
            41.  Lam CX, Hutmacher DW, Schantz JT, et al., 2009, Evaluation   fabricated scaffolds with roughened struts that enhance both
               of polycaprolactone scaffold degradation for 6 months in   stem cell proliferation and differentiation by controlling cell
               vitro and in vivo. J Biomed Mater Res A, 90(3): 906–919.  shape. Biomaterials, 33(16): 4022–4030.
               https://doi.org/10.1002/jbm.a.32052                https://doi.org/10.1016/j.biomaterials.2012.02.048
            42.  Yao C, Qiu Z, Li X,  et al., 2023, Electrohydrodynamic   51.  Neves SC, Mota C, Longoni A,  et al., 2016, Additive
               printing of microfibrous architectures with cell-scale spacing   manufactured polymeric 3D scaffolds with tailored surface
               for improved cellular migration and neurite outgrowth.   topography influence mesenchymal stromal cells activity.
               Small, 19(19): e2207331.                           Biofabrication, 8(2): 025012.
               https://doi.org/10.1002/smll.202207331             https://doi.org/10.1088/1758-5090/8/2/025012











            Volume 9 Issue 6 (2023)                        360                          https://doi.org/10.36922/ijb.1071
   363   364   365   366   367   368   369   370   371   372   373