Page 419 - IJB-9-6
P. 419
International Journal of Bioprinting Biofabrication for islet transplantation
53. Öberg-Welsh C, 2001, Long-term culture in matrigel cross-linking method in diabetic rodents and nonhuman
enhances the insulin secretion of fetal porcine islet-like cell primates. Sci Adv, 8(26): eabm3145.
clusters in vitro. Pancreas, 22(2): 157–163.
68. Gunatillake PA, Adhikari R, 2003, Biodegradable synthetic
54. Aisenbrey EA, Murphy WL, 2020, Synthetic alternatives to polymers for tissue engineering. Eur Cell Mater, 5: 1–16;
Matrigel. Nat Rev Mater, 5(7): 539–551. discussion 16.
55. Foster GA, García AJ, 2017, Bio-synthetic materials for 69. Kim BS, Das S, Jang J, et al., 2020, Decellularized extracellular
immunomodulation of islet transplants. Adv Drug Deliv Rev, matrix-based bioinks for engineering tissue- and organ-
114: 266–271. specific microenvironments. Chem Rev, 120(19): 10608–
10661.
56. Dufour JM, Rajotte R V, Zimmerman M, et al., 2005,
Development of an ectopic site for islet transplantation, using 70. Pati F, Jang J, Ha DH, et al., 2014, Printing three-dimensional
biodegradable scaffolds. Tissue Eng, 11(9–10): 1323–1331. tissue analogues with decellularized extracellular matrix
bioink. Nat Commun, 5(1), 3935.
57. Blomeier H, Zhang X, Rives C, et al., 2006, Polymer scaffolds
as synthetic microenvironments for extrahepatic islet 71. Kim J, Shim IK, Hwang DG, et al., 2019, 3D cell printing
transplantation. Transplantation, 82(4): 452–459. of islet-laden pancreatic tissue-derived extracellular matrix
bioink constructs for enhancing pancreatic functions.
58. Guo C, Zhang T, Tang J, et al., 2023, Construction of PLGA
porous microsphere-based artificial pancreatic islets assisted J Mater Chem B, 7(10): 1773–1781.
by the cell centrifugation perfusion technique. ACS Omega, 72. Damodaran RG, Vermette P, 2018, Decellularized pancreas
8(17): 15288–15897. as a native extracellular matrix scaffold for pancreatic islet
seeding and culture. J Tissue Eng Regen Med, 12(5): 1230–1237.
59. Vanaei S, Parizi MS, Vanaei S, et al., 2021, An overview
on materials and techniques in 3D bioprinting toward 73. Sackett SD, Tremmel DM, Ma F, et al., 2018, Extracellular
biomedical application. Eng Regen, 2: 1–18. matrix scaffold and hydrogel derived from decellularized
and delipidized human pancreas. Sci Rep, 8(1): 10452.
60. Singh S, Prakash C, Singh M, et al., 2019, Poly-lactic-
Acid: Potential material for bio-printing applications, 74. Berkova Z, Zacharovova K, Patikova A, et al., 2022,
in Biomanufacturing. Springer International Publishing, Decellularized pancreatic tail as matrix for pancreatic islet
Cham, 69–87. transplantation into the greater omentum in rats. J Funct
Biomater, 13(4): 171.
61. Huang H, Shang Y, Li H, et al., 2022, Co-transplantation of
islets-laden microgels and biodegradable O 2 -generating 75. Jun I, Han HS, Edwards J, et al., 2018, Electrospun fibrous
microspheres for diabetes treatment. ACS Appl Mater scaffolds for tissue engineering: Viewpoints on architecture
Interfaces, 14(34): 38448–38458. and fabrication. Int J Mol Sci, 19(3): 745.
62. Hoveizi E, Tavakol S, 2019, Therapeutic potential of human 76. Zaszczyńska A, Niemczyk-Soczynska B, Sajkiewicz P, 2022,
mesenchymal stem cells derived beta cell precursors on a A comprehensive review of electrospun fibers, 3D-printed
nanofibrous scaffold: An approach to treat diabetes mellitus. scaffolds, and hydrogels for cancer therapies. Polymers
J Cell Physiol, 234(7): 10196–10204. (Basel), 14(23): 5278.
63. Liu XY, Nothias JM, Scavone A, et al., 2010, Biocompatibility 77. Buitinga M, Truckenmüller R, Engelse MA, et al., 2013,
investigation of polyethylene glycol and alginate-poly-l- Microwell scaffolds for the extrahepatic transplantation of
lysine for islet encapsulation. ASAIO J, 56(3): 241–245. islets of langerhans. PLoS One, 8(5): e64772.
64. De Toni T, Stock AA, Devaux F, et al., 2022, Parallel evaluation 78. Liu Q, Wang X, Chiu A, et al., 2021, A zwitterionic
of polyethylene glycol conformal coating and alginate polyurethane nanoporous device with low foreign‐body
microencapsulation as immunoisolation strategies for response for islet encapsulation. Adv Mater, 33(39): 2102852.
pancreatic islet transplantation. Front Bioeng Biotechnol, 10, 79. Mridha AR, Dargaville TR, Dalton PD, et al., 2022,
886483.
Prevascularized retrievable hybrid implant to enhance
65. Teramura Y, Kaneda Y, Iwata H, 2007, Islet-encapsulation function of subcutaneous encapsulated islets. Tissue Eng
in ultra-thin layer-by-layer membranes of poly(vinyl Part A, 28(5–6): 212–224.
alcohol) anchored to poly(ethylene glycol)-lipids in the cell 80. Rodríguez-Comas J, Ramón-Azcón J, 2022, Islet-on-a-chip for
membrane. Biomaterials, 28(32): 4818–4825.
the study of pancreatic β-cell function. Vitr Model, 1(1): 41–57.
66. Weaver JD, Headen DM, Hunckler MD, et al., 2018, 81. Jun Y, Lee J, Choi S, et al., 2019, In vivo–mimicking
Design of a vascularized synthetic poly(ethylene glycol) microfluidic perfusion culture of pancreatic islet spheroids.
macroencapsulation device for islet transplantation. Sci Adv, 5(11): eaax4520.
Biomaterials, 172: 54–65.
82. Patel SN, Ishahak M, Chaimov D, et al., 2021, Organoid
67. Stock AA, Gonzalez GC, Pete SI, et al., 2022, Performance microphysiological system preserves pancreatic islet
of islets of Langerhans conformally coated via an emulsion
function within 3D matrix. Sci Adv, 7(7).
Volume 9 Issue 6 (2023) 411 https://doi.org/10.36922/ijb.1024

