Page 419 - IJB-9-6
P. 419

International Journal of Bioprinting                                   Biofabrication for islet transplantation




            53.  Öberg-Welsh C, 2001, Long-term culture in matrigel   cross-linking method in diabetic rodents and nonhuman
               enhances the insulin secretion of fetal porcine islet-like cell   primates. Sci Adv, 8(26): eabm3145.
               clusters in vitro. Pancreas, 22(2): 157–163.
                                                               68.  Gunatillake PA, Adhikari R, 2003, Biodegradable synthetic
            54.  Aisenbrey EA, Murphy WL, 2020, Synthetic alternatives to   polymers for tissue engineering.  Eur Cell Mater, 5: 1–16;
               Matrigel. Nat Rev Mater, 5(7): 539–551.            discussion 16.
            55.  Foster GA, García AJ, 2017, Bio-synthetic materials for   69.  Kim BS, Das S, Jang J, et al., 2020, Decellularized extracellular
               immunomodulation of islet transplants. Adv Drug Deliv Rev,   matrix-based bioinks for engineering tissue- and  organ-
               114: 266–271.                                      specific microenvironments.  Chem  Rev, 120(19): 10608–
                                                                  10661.
            56.  Dufour JM, Rajotte  R  V,  Zimmerman M,  et al.,  2005,
               Development of an ectopic site for islet transplantation, using   70.  Pati F, Jang J, Ha DH, et al., 2014, Printing three-dimensional
               biodegradable scaffolds. Tissue Eng, 11(9–10): 1323–1331.   tissue analogues with decellularized extracellular matrix
                                                                  bioink. Nat Commun, 5(1), 3935.
            57.  Blomeier H, Zhang X, Rives C, et al., 2006, Polymer scaffolds
               as synthetic microenvironments for extrahepatic islet   71.  Kim J, Shim IK, Hwang DG, et al., 2019, 3D cell printing
               transplantation. Transplantation, 82(4): 452–459.   of islet-laden pancreatic tissue-derived extracellular matrix
                                                                  bioink constructs for enhancing pancreatic functions.
            58.  Guo C, Zhang T, Tang J, et al., 2023, Construction of PLGA
               porous microsphere-based artificial pancreatic islets assisted   J Mater Chem B, 7(10): 1773–1781.
               by the cell centrifugation perfusion technique. ACS Omega,   72.  Damodaran RG, Vermette P, 2018, Decellularized pancreas
               8(17): 15288–15897.                                as a native extracellular matrix scaffold for pancreatic islet
                                                                  seeding and culture. J Tissue Eng Regen Med, 12(5): 1230–1237.
            59.  Vanaei  S,  Parizi  MS,  Vanaei  S,  et al.,  2021,  An  overview
               on materials and techniques in 3D bioprinting toward   73.  Sackett SD, Tremmel DM, Ma F, et al., 2018, Extracellular
               biomedical application. Eng Regen, 2: 1–18.        matrix scaffold and hydrogel derived from decellularized
                                                                  and delipidized human pancreas. Sci Rep, 8(1): 10452.
            60.  Singh S, Prakash C, Singh M,  et al., 2019, Poly-lactic-
               Acid: Potential material for bio-printing applications,   74.  Berkova Z, Zacharovova K, Patikova A,  et  al., 2022,
               in  Biomanufacturing. Springer International Publishing,   Decellularized pancreatic tail as matrix for pancreatic islet
               Cham, 69–87.                                       transplantation into the greater omentum in rats.  J Funct
                                                                  Biomater, 13(4): 171.
            61.  Huang H, Shang Y, Li H, et al., 2022, Co-transplantation of
               islets-laden microgels and biodegradable O 2 -generating   75.  Jun I, Han HS, Edwards J, et al., 2018, Electrospun fibrous
               microspheres for diabetes treatment.  ACS Appl Mater   scaffolds for tissue engineering: Viewpoints on architecture
               Interfaces, 14(34): 38448–38458.                   and fabrication. Int J Mol Sci, 19(3): 745.
            62.  Hoveizi E, Tavakol S, 2019, Therapeutic potential of human   76.  Zaszczyńska A, Niemczyk-Soczynska B, Sajkiewicz P, 2022,
               mesenchymal stem cells derived beta cell precursors on a   A comprehensive review of electrospun fibers, 3D-printed
               nanofibrous scaffold: An approach to treat diabetes mellitus.   scaffolds, and hydrogels for cancer therapies.  Polymers
               J Cell Physiol, 234(7): 10196–10204.               (Basel), 14(23): 5278.
            63.  Liu XY, Nothias JM, Scavone A, et al., 2010, Biocompatibility   77.  Buitinga M, Truckenmüller R, Engelse MA,  et al., 2013,
               investigation of polyethylene glycol and alginate-poly-l-  Microwell scaffolds for the extrahepatic transplantation of
               lysine for islet encapsulation. ASAIO J, 56(3): 241–245.   islets of langerhans. PLoS One, 8(5): e64772.
            64.  De Toni T, Stock AA, Devaux F, et al., 2022, Parallel evaluation   78.  Liu  Q,  Wang  X,  Chiu  A,  et al.,  2021,  A  zwitterionic
               of polyethylene glycol conformal coating and alginate   polyurethane nanoporous device  with low foreign‐body
               microencapsulation as immunoisolation strategies for   response for islet encapsulation. Adv Mater, 33(39): 2102852.
               pancreatic islet transplantation. Front Bioeng Biotechnol, 10,   79.  Mridha AR, Dargaville TR, Dalton PD,  et al., 2022,
               886483.
                                                                  Prevascularized retrievable hybrid implant to enhance
            65.  Teramura Y, Kaneda Y, Iwata H, 2007, Islet-encapsulation   function of subcutaneous encapsulated islets.  Tissue  Eng
               in ultra-thin layer-by-layer membranes of poly(vinyl   Part A, 28(5–6): 212–224.
               alcohol)  anchored to poly(ethylene glycol)-lipids in the cell   80.  Rodríguez-Comas J, Ramón-Azcón J, 2022, Islet-on-a-chip for
               membrane. Biomaterials, 28(32): 4818–4825.
                                                                  the study of pancreatic β-cell function. Vitr Model, 1(1): 41–57.
            66.  Weaver JD, Headen DM, Hunckler MD,  et  al., 2018,   81.  Jun Y, Lee J, Choi S,  et al., 2019,  In vivo–mimicking
               Design of  a  vascularized synthetic  poly(ethylene  glycol)   microfluidic perfusion culture of pancreatic islet spheroids.
               macroencapsulation  device for islet transplantation.   Sci Adv, 5(11): eaax4520.
               Biomaterials, 172: 54–65.
                                                               82.  Patel SN, Ishahak M, Chaimov D,  et al., 2021, Organoid
            67.  Stock AA, Gonzalez GC, Pete SI, et al., 2022, Performance   microphysiological system preserves pancreatic islet
               of islets of Langerhans conformally coated via an emulsion
                                                                  function within 3D matrix. Sci Adv, 7(7).

            Volume 9 Issue 6 (2023)                        411                        https://doi.org/10.36922/ijb.1024
   414   415   416   417   418   419   420   421   422   423   424