Page 420 - IJB-9-6
P. 420

International Journal of Bioprinting                                   Biofabrication for islet transplantation




            83.  Bauer S, Wennberg Huldt C, Kanebratt KP,  et al., 2017,   98.  Wang D, Guo Y, Zhu J,  et al., 2022, Hyaluronic acid
               Functional coupling of human pancreatic islets and liver   methacrylate/pancreatic extracellular matrix as a potential
               spheroids on-a-chip: Towards a novel human ex vivo type 2   3D printing bioink for constructing islet organoids.  Acta
               diabetes model. Sci Rep, 7(1): 14620.              Biomater, 165: 86–101.
            84.  Abadpour S, Aizenshtadt A, Olsen PA, et al., 2020, Pancreas-  99.  Fu B, Shen J, Chen Y, et al., 2021, Narrative review of gene
               on-a-chip technology for transplantation applications. Curr   modification: Applications in three-dimensional (3D)
               Diab Rep, 20(12): 72.                              bioprinting. Ann Transl Med, 9(19):1502.
            85.  Billiet T, Vandenhaute M, Schelfhout J,  et al., 2012,   100. Hogrebe NJ, Augsornworawat P, Maxwell KG, et al., 2020,
               A review of trends and limitations in hydrogel-rapid   Targeting the cytoskeleton to direct pancreatic differentiation
               prototyping for tissue engineering. Biomaterials, 33(26):   of human pluripotent stem cells.  Nat Biotechnol, 38(4):
               6020–6041.                                         460–470.
            86.  Kim D, Kang D, Kim D, et al., 2023, Volumetric bioprinting   101. Pagliuca FW, Millman JR, Gürtler M, et al., 2014, Generation
               strategies for creating large-scale tissues and organs. MRS Bull,   of functional human pancreatic β cells in vitro. Cell, 159(2):
               48: 657–667.                                       428–439.
            87.  Kim J, Kang K, Drogemuller CJ,  et al., 2019, Bioprinting   102. Rezania A, Bruin JE, Arora P, et al., 2014, Reversal of diabetes
               an artificial pancreas for Type 1 diabetes. Curr Diab Rep,    with insulin-producing cells derived in vitro from human
               19(8): 53.                                         pluripotent stem cells. Nat Biotechnol, 32(11): 1121–1133.
            88.  Duin S, Schütz K, Ahlfeld T, et al., 2019, 3D bioprinting of   103. Nair GG, Liu JS, Russ HA,  et al., 2019, Recapitulating
               functional islets of Langerhans in an alginate/methylcellulose   endocrine cell clustering in culture promotes maturation
               hydrogel blend. Adv Healthc Mater, 8(7): 1801631.   of human stem-cell-derived β cells.  Nat Cell Biol, 21(2):
                                                                  263–274.
            89.  Liu X, Carter SD, Renes MJ,  et al., 2019, Development
               of a coaxial 3D printing platform for biofabrication of   104. Penney  J,  Ralvenius  WT,  Tsai  LH,  2020,  Modeling
               implantable islet‐containing constructs. Adv Healthc Mater,   Alzheimer’s disease with iPSC-derived brain cells.  Mol
               8(7): 1801181.                                     Psychiatry, 25(1): 148–167.
            90.  Gungor-Ozkerim PS, Inci I, Zhang YS, et al., 2018, Bioinks for   105. Turinetto V, Orlando L, Giachino C, 2017, Induced
               3D bioprinting: An overview. Biomater Sci, 6(5): 915–946.   pluripotent stem cells: Advances in the quest for genetic
                                                                  stability during reprogramming process. Int J Mol Sci, 18(9):
            91.  Marchioli G,  van Gurp L, van Krieken PP,  et al., 2015,
               Fabrication of  three-dimensional  bioplotted hydrogel   1952.
               scaffolds for islets of Langerhans transplantation.   106. Mirmalek-Sani SH, Orlando G, McQuilling JP, et al., 2013,
               Biofabrication, 7(2): 025009.                      Porcine  pancreas  extracellular  matrix  as  a  platform  for
                                                                  endocrine pancreas bioengineering.  Biomaterials, 34(22):
            92.  Sun W, Starly B, Daly AC,  et al., 2020, The bioprinting
               roadmap. Biofabrication, 12(2): 022002.            5488–5495.
                                                               107. Napierala H, Hillebrandt KH, Haep N,  et al., 2017,
            93.  Chen S, Luo J, Shen L, et al., 2022, 3D printing mini-capsule   Engineering an endocrine neo-pancreas by repopulation of
               device for islet delivery to treat Type 1 diabetes. ACS Appl
               Mater Interfaces, 14(20): 23139–23151.             a decellularized rat pancreas with islets of Langerhans. Sci
                                                                  Rep, 7(1): 41777.
            94.  Clua‐Ferré L, De Chiara F, Rodríguez‐Comas J, et al., 2022,
               Collagen‐tannic acid spheroids for  β‐cell encapsulation   108. Chaimov D, Baruch L, Krishtul S, et al., 2017, Innovative
               fabricated using a 3D bioprinter. Adv Mater Technol, 7(7):   encapsulation platform based on pancreatic extracellular
               2101696.                                           matrix achieve substantial insulin delivery. J Control Release,
                                                                  257: 91–101.
            95.  Hwang DG, Jo Y, Kim M, et al., 2022, A 3D bioprinted hybrid
               encapsulation system for delivery of human pluripotent stem   109. Jiang K, Chaimov D, Patel SN,  et al., 2019, 3-D
               cell-derived pancreatic islet-like aggregates. Biofabrication,   physiomimetic extracellular matrix hydrogels provide a
               14(1): 014101.                                     supportive microenvironment for rodent and human islet
                                                                  culture. Biomaterials, 198: 37–48.
            96.  Scheiner KC, Coulter F, Maas-Bakker RF,  et  al.,
               2020, Vascular endothelial growth factor–releasing   110. Zhu Y, Wang D, Yao X, et al., 2021, Biomimetic hybrid scaffold
               microspheres based on poly(ε-caprolactone-PEG-ε-   of electrospun silk fibroin and pancreatic decellularized
               caprolactone)-b-poly(L-lactide) multiblock copolymers   extracellular matrix for islet survival. J Biomater Sci Polym
               incorporated  in  a  three-dimensional  printed    Ed, 32(2): 151–165.
               poly(dimethylsiloxane) cell macroencapsulation device.    111. Ahn CB, Lee JH, Kim JH, et al., 2022, Development of a 3D
               J Pharm Sci, 109(1): 863–870.                      subcutaneous construct containing insulin-producing beta
                                                                  cells using bioprinting. Bio-Design Manuf, 5(2): 265–276.
            97.  Wang X, 2019, Advanced polymers for three-dimensional
               (3D) organ bioprinting. Micromachines, 10(12): 814.

            Volume 9 Issue 6 (2023)                        412                        https://doi.org/10.36922/ijb.1024
   415   416   417   418   419   420   421   422   423   424   425