Page 440 - IJB-9-6
P. 440

International Journal of Bioprinting                                Versatile pomelo peel-inspired structures




            3.   Omenetto FG, Kaplan DL, 2010, New opportunities for an   http://dx.doi.org/10.18063/ijb.v8i1.501
               ancient material. Science, 329(5991): 528–531.
                                                               14.  Du Plessis A, Razavi SMJ, Benedetti M, et al., 2022, Properties
               http://dx.doi.org/10.1126/science.1188936          and applications of additively manufactured metallic cellular
            4.   Islam MK, Hazell PJ, Escobedo JP, et al., 2021, Biomimetic   materials: A review. Prog Mater Sci, 125: 100918.
               armour design strategies for additive manufacturing:   http://dx.doi.org/10.1016/j.pmatsci.2021.100918
               A review. Mater Des, 205: 109730.
                                                               15.  Yang J, Gao  H, Zhang  D,  et al.,  2022, Static  compressive
               http://dx.doi.org/10.1016/j.matdes.2021.109730
                                                                  behavior  and  material failure  mechanism  of  trabecular
            5.   Mohammadi A, Hajizadeh E, Tan Y,  et  al., 2023, A   tantalum scaffolds fabricated by laser powder bed fusion-
               bioinspired 3D-printable flexure joint with cellular   based additive manufacturing. Int J Bioprint, 8(1): 438.
               mechanical metamaterial architecture for soft robotic hands.   http://dx.doi.org/10.18063/ijb.v8i1.438
               Int J Bioprint, 9(3): 696.
                                                               16.  Wang R, Gu D, Lin K, et al., 2022, Multi-material additive
               http://dx.doi.org/10.18063/ijb.696                 manufacturing of a bio-inspired layered ceramic/metal
            6.   Yang J, Gu D, Lin K, et al., 2022, Laser additive manufacturing   structure: Formation mechanisms and mechanical
               of bio-inspired metallic structures. Chinese J Mech Eng Addit   properties. Int J Mach Tools Manuf, 175: 103872.
               Manuf Front, 1(1): 100013.                         http://dx.doi.org/10.1016/j.ijmachtools.2022.103872
               http://dx.doi.org/10.1016/j.cjmeam.2022.100013  17.  Yuan L, Gu D, Lin K, et al., 2022, Electrically actuated shape
            7.   Benedetti M, du Plessis A, Ritchie RO,  et al., 2021,   recovery of NiTi components processed by laser powder bed
               Architected cellular materials: A review on their mechanical   fusion after regulating the dimensional accuracy and phase
               properties towards fatigue-tolerant design and fabrication.   transformation behavior. Chinese J Mech Eng Addit Manuf
               Mater Sci Eng R, 144: 100606.                      Front, 1(4): 100056.
                                                                  http://dx.doi.org/10.1016/j.cjmeam.2022.100056
               http://dx.doi.org/10.1016/j.mser.2021.100606
                                                               18.  Lin K, Hu K, Gu D, 2019, Metallic integrated thermal
            8.   Gu D, Shi X, Poprawe R,  et al., 2021, Material-structure-  protection structures inspired by the Norway spruce stem:
               performance integrated laser-metal additive manufacturing.   Design, numerical  simulation and  selective  laser  melting
               Science, 372(6545): eabg1487.                      fabrication. Opt Laser Technol, 115: 9–19.
               http://dx.doi.org/10.1126/science.abg1487          http://dx.doi.org/10.1016/j.optlastec.2019.02.003
            9.   Tofail SAM, Koumoulos EP, Bandyopadhyay A,  et al.,   19.  Hu  K,  Lin  K,  Gu  D,  et  al.,  2019,  Mechanical  properties
               2018, Additive manufacturing: scientific and technological   and deformation behavior under compressive loading of
               challenges, market uptake and opportunities. Mater Today,   selective laser melting processed bio-inspired sandwich
               21(1): 22–37.                                      structures. Mater Sci Eng A, 762: 138089.
               http://dx.doi.org/10.1016/j.mattod.2017.07.001     http://dx.doi.org/10.1016/j.msea.2019.138089
            10.  Zhang Y, Attarilar S, Wang L, et al., 2021, A review on design   20.  Yang C, Li QM, Wang Y, 2021, Compressive properties of
               and mechanical properties of additively manufactured NiTi   cuttlebone-like lattice (CLL) materials with functionally
               implants for orthopedic applications. Int J Bioprint, 7(2): 340.  graded density. Eur J Mech A Solids, 87: 104215.
               http://dx.doi.org/10.18063/ijb.v7i2.340            http://dx.doi.org/10.1016/j.euromechsol.2021.104215
            11.  Hojjatzadeh SMH, Parab ND, Guo Q,  et al., 2020, Direct   21.  Lazarus BS, Luu RK, Ruiz-Perez S, et al., 2022, Equine hoof
               observation of pore formation mechanisms during LPBF   wall: Structure, properties, and bioinspired designs.  Acta
               additive manufacturing process and high energy density   Biomater, 151: 426–445.
               laser welding. Int J Mach Tools Manuf, 153: 103555.  http://dx.doi.org/10.1016/j.actbio.2022.08.028
               http://dx.doi.org/10.1016/j.ijmachtools.2020.103555  22.  Pack RC, Romberg SK, Badran AA, et al., 2020, Carbon fiber
                                                                  and syntactic foam hybrid materials via core–shell material
            12.  Korkmaz ME, Gupta MK, Robak G, et al., 2022, Development   extrusion additive manufacturing. Adv Mater Technol, 5(12):
               of  lattice  structure with selective  laser  melting process:  A   2000731.
               state of the art on properties, future trends and challenges. J
               Manuf Processes, 81: 1040–1063.                    http://dx.doi.org/10.1002/admt.202000731
               http://dx.doi.org/10.1016/j.jmapro.2022.07.051  23.  Wang D, Liu L, Deng G, et al., 2022, Recent progress on additive
                                                                  manufacturing of multi-material structures with laser powder
            13.  Zhou Y, Wang J, Yang Y,  et al., 2022, Laser additive   bed fusion. Virtual Phys Prototyping, 17(2): 329–365.
               manufacturing of zinc targeting for biomedical application.
               Int J Bioprint, 8(1): 501.                         http://dx.doi.org/10.1080/17452759.2022.2028343



            Volume 9 Issue 6 (2023)                        432                         https://doi.org/10.36922/ijb.1011
   435   436   437   438   439   440   441   442   443   444   445