Page 440 - IJB-9-6
P. 440
International Journal of Bioprinting Versatile pomelo peel-inspired structures
3. Omenetto FG, Kaplan DL, 2010, New opportunities for an http://dx.doi.org/10.18063/ijb.v8i1.501
ancient material. Science, 329(5991): 528–531.
14. Du Plessis A, Razavi SMJ, Benedetti M, et al., 2022, Properties
http://dx.doi.org/10.1126/science.1188936 and applications of additively manufactured metallic cellular
4. Islam MK, Hazell PJ, Escobedo JP, et al., 2021, Biomimetic materials: A review. Prog Mater Sci, 125: 100918.
armour design strategies for additive manufacturing: http://dx.doi.org/10.1016/j.pmatsci.2021.100918
A review. Mater Des, 205: 109730.
15. Yang J, Gao H, Zhang D, et al., 2022, Static compressive
http://dx.doi.org/10.1016/j.matdes.2021.109730
behavior and material failure mechanism of trabecular
5. Mohammadi A, Hajizadeh E, Tan Y, et al., 2023, A tantalum scaffolds fabricated by laser powder bed fusion-
bioinspired 3D-printable flexure joint with cellular based additive manufacturing. Int J Bioprint, 8(1): 438.
mechanical metamaterial architecture for soft robotic hands. http://dx.doi.org/10.18063/ijb.v8i1.438
Int J Bioprint, 9(3): 696.
16. Wang R, Gu D, Lin K, et al., 2022, Multi-material additive
http://dx.doi.org/10.18063/ijb.696 manufacturing of a bio-inspired layered ceramic/metal
6. Yang J, Gu D, Lin K, et al., 2022, Laser additive manufacturing structure: Formation mechanisms and mechanical
of bio-inspired metallic structures. Chinese J Mech Eng Addit properties. Int J Mach Tools Manuf, 175: 103872.
Manuf Front, 1(1): 100013. http://dx.doi.org/10.1016/j.ijmachtools.2022.103872
http://dx.doi.org/10.1016/j.cjmeam.2022.100013 17. Yuan L, Gu D, Lin K, et al., 2022, Electrically actuated shape
7. Benedetti M, du Plessis A, Ritchie RO, et al., 2021, recovery of NiTi components processed by laser powder bed
Architected cellular materials: A review on their mechanical fusion after regulating the dimensional accuracy and phase
properties towards fatigue-tolerant design and fabrication. transformation behavior. Chinese J Mech Eng Addit Manuf
Mater Sci Eng R, 144: 100606. Front, 1(4): 100056.
http://dx.doi.org/10.1016/j.cjmeam.2022.100056
http://dx.doi.org/10.1016/j.mser.2021.100606
18. Lin K, Hu K, Gu D, 2019, Metallic integrated thermal
8. Gu D, Shi X, Poprawe R, et al., 2021, Material-structure- protection structures inspired by the Norway spruce stem:
performance integrated laser-metal additive manufacturing. Design, numerical simulation and selective laser melting
Science, 372(6545): eabg1487. fabrication. Opt Laser Technol, 115: 9–19.
http://dx.doi.org/10.1126/science.abg1487 http://dx.doi.org/10.1016/j.optlastec.2019.02.003
9. Tofail SAM, Koumoulos EP, Bandyopadhyay A, et al., 19. Hu K, Lin K, Gu D, et al., 2019, Mechanical properties
2018, Additive manufacturing: scientific and technological and deformation behavior under compressive loading of
challenges, market uptake and opportunities. Mater Today, selective laser melting processed bio-inspired sandwich
21(1): 22–37. structures. Mater Sci Eng A, 762: 138089.
http://dx.doi.org/10.1016/j.mattod.2017.07.001 http://dx.doi.org/10.1016/j.msea.2019.138089
10. Zhang Y, Attarilar S, Wang L, et al., 2021, A review on design 20. Yang C, Li QM, Wang Y, 2021, Compressive properties of
and mechanical properties of additively manufactured NiTi cuttlebone-like lattice (CLL) materials with functionally
implants for orthopedic applications. Int J Bioprint, 7(2): 340. graded density. Eur J Mech A Solids, 87: 104215.
http://dx.doi.org/10.18063/ijb.v7i2.340 http://dx.doi.org/10.1016/j.euromechsol.2021.104215
11. Hojjatzadeh SMH, Parab ND, Guo Q, et al., 2020, Direct 21. Lazarus BS, Luu RK, Ruiz-Perez S, et al., 2022, Equine hoof
observation of pore formation mechanisms during LPBF wall: Structure, properties, and bioinspired designs. Acta
additive manufacturing process and high energy density Biomater, 151: 426–445.
laser welding. Int J Mach Tools Manuf, 153: 103555. http://dx.doi.org/10.1016/j.actbio.2022.08.028
http://dx.doi.org/10.1016/j.ijmachtools.2020.103555 22. Pack RC, Romberg SK, Badran AA, et al., 2020, Carbon fiber
and syntactic foam hybrid materials via core–shell material
12. Korkmaz ME, Gupta MK, Robak G, et al., 2022, Development extrusion additive manufacturing. Adv Mater Technol, 5(12):
of lattice structure with selective laser melting process: A 2000731.
state of the art on properties, future trends and challenges. J
Manuf Processes, 81: 1040–1063. http://dx.doi.org/10.1002/admt.202000731
http://dx.doi.org/10.1016/j.jmapro.2022.07.051 23. Wang D, Liu L, Deng G, et al., 2022, Recent progress on additive
manufacturing of multi-material structures with laser powder
13. Zhou Y, Wang J, Yang Y, et al., 2022, Laser additive bed fusion. Virtual Phys Prototyping, 17(2): 329–365.
manufacturing of zinc targeting for biomedical application.
Int J Bioprint, 8(1): 501. http://dx.doi.org/10.1080/17452759.2022.2028343
Volume 9 Issue 6 (2023) 432 https://doi.org/10.36922/ijb.1011

