Page 442 - IJB-9-6
P. 442

International Journal of Bioprinting                                Versatile pomelo peel-inspired structures




            45.  Bi J, Lei Z, Chen Y, et al., 2021, An additively manufactured   http://dx.doi.org/10.1016/j.compositesb.2022.110345
               Al-14.1Mg-0.47Si-0.31Sc-0.17Zr alloy with  high specific
               strength, good thermal stability and excellent corrosion   55.  Hu J, Tan ATL, Chen H, et al., 2022, Superior compressive
               resistance. J Mater Sci Technol, 67: 23–35.        properties of 3D printed plate lattice mechanical
                                                                  metamaterials. Int J Mech Sci, 231: 107586.
               http://dx.doi.org/10.1016/j.jmst.2020.06.036
                                                                  http://dx.doi.org/10.1016/j.ijmecsci.2022.107586
            46.  Li R, Wang M, Yuan T,  et al., 2017, Selective laser melting
               of a novel Sc and Zr modified Al-6.2 Mg alloy: Processing,   56.  Xiao L, Xu X, Feng G, et al., 2022, Compressive performance
               microstructure, and properties. Powder Technol, 319: 117–128.  and energy absorption of additively manufactured metallic
                                                                  hybrid lattice structures. Int J Mech Sci, 219: 107093.
               http://dx.doi.org/10.1016/j.powtec.2017.06.050
                                                                  http://dx.doi.org/10.1016/j.ijmecsci.2022.107093
            47.  Li K, Ji C, Bai S,  et al., 2023, Selective laser melting of
               magnesium alloys: Necessity, formability, performance,   57.  Zhang J, Liu Y, Babamiri BB, et al., 2022, Enhancing specific
               optimization and applications.  J Mater Sci Technol, 154:   energy absorption of additively manufactured titanium
               65–93.                                             lattice structures through simultaneous manipulation of
                                                                  architecture and constituent material.  Addit Manuf, 55:
               http://dx.doi.org/10.1016/j.jmst.2022.12.053       102887.
            48.  Kotadia HR, Gibbons G, Das A, et al., 2021, A review of laser   http://dx.doi.org/10.1016/j.addma.2022.102887
               powder bed fusion additive manufacturing of aluminium
               alloys: Microstructure and properties.  Addit Manuf, 46:   58.  Yang J, Gu D, Lin K, et al., 2021, Laser additive manufacturing
               102155.                                            of cellular structure with enhanced compressive performance
                                                                  inspired by Al–Si crystalline microstructure. CIRP J Manuf
               http://dx.doi.org/10.1016/j.addma.2021.102155      Sci Technol, 32: 26–36.
            49.  Zhu Z, Hu Z, Seet HL, et al., 2023, Recent progress on the   http://dx.doi.org/10.1016/j.cirpj.2020.11.003
               additive manufacturing of aluminum alloys and aluminum
               matrix composites: Microstructure, properties, and   59.  Li C, Lei H, Liu Y, et al., 2018, Crushing behavior of multi-
               applications. Int J Mach Tools Manuf, 190: 104047.  layer metal lattice panel fabricated by selective laser melting.
                                                                  Int J Mech Sci, 145: 389–399.
               http://dx.doi.org/10.1016/j.ijmachtools.2023.104047
                                                                  http://dx.doi.org/10.1016/j.ijmecsci.2018.07.029
            50.  Li R, Wang M, Li Z, et al., 2020, Developing a high-strength
               Al-Mg-Si-Sc-Zr  alloy  for  selective laser melting:  Crack-  60.  Al-Saedi DSJ, Masood SH, Faizan-Ur-Rab M, et al., 2018,
               inhibiting and multiple strengthening mechanisms.  Acta   Mechanical properties and energy absorption capability of
               Mater, 193: 83–98.                                 functionally graded F2BCC lattice fabricated by SLM. Mater
                                                                  Des, 144: 32–44.
               http://dx.doi.org/10.1016/j.actamat.2020.03.060
                                                                  http://dx.doi.org/10.1016/j.matdes.2018.01.059
            51.  Viale V, Stavridis J, Salmi A, et al., 2022, Optimisation of
               downskin parameters to produce metallic parts via laser   61.  Chen W, Gu D, Yang J, et al., 2022, Compressive mechanical
               powder bed fusion process: an overview. Int J Adv Manuf   properties and shape memory effect of NiTi gradient lattice
               Technol, 123(7–8): 2159–2182.                      structures fabricated by laser powder bed fusion.  Int J
                                                                  Extreme Manuf, 4(4): 045002.
               http://dx.doi.org/10.1007/s00170-022-10314-z
                                                                  http://dx.doi.org/10.1088/2631-7990/ac8ef3
            52.  Han Q, Gu H, Soe S,  et al., 2018, Manufacturability of   62.  Yang X, Yang Q, Shi YS, et al., 2022, Effect of volume fraction
               AlSi10Mg  overhang  structures  fabricated  by laser  powder   and unit cell size on  manufacturability and compressive
               bed fusion. Mater Des, 160: 1080–1095.
                                                                  behaviors of Ni-Ti triply periodic minimal surface lattices.
               http://dx.doi.org/10.1016/j.matdes.2018.10.043     Addit Manuf, 54: 102737.
            53.  Choy  SY,  Sun  C-N,  Sin  WJ,  et al.,  2021,  Superior  energy   http://dx.doi.org/10.1016/j.addma.2022.102737
               absorption of continuously graded microlattices by electron   63.  Ho JY, Wong KK, Leong KC, et al., 2017, Convective heat
               beam additive manufacturing.  Virtual Phys Prototyping,   transfer performance of airfoil heat sinks fabricated by
               16(1): 14–28.                                      selective laser melting. Int J Therm Sci, 114: 213–228.

               http://dx.doi.org/10.1080/17452759.2020.1868656    http://dx.doi.org/10.1016/j.ijthermalsci.2016.12.016
            54.  Gao Z, Wang H, Sun H, et al., 2022, Additively manufactured   64.  Wong KK, Ho JY, Leong KC, et al., 2016, Fabrication of heat
               high-energy-absorption metamaterials with artificially   sinks by selective laser melting for convective heat transfer
               engineered distribution of bio-inspired hierarchical   applications. Virtual Phys Prototyp, 11(3): 159–165.
               microstructures. Composites, Part B, 247: 110345.
                                                                  http://dx.doi.org/10.1080/17452759.2016.1211849


            Volume 9 Issue 6 (2023)                        434                         https://doi.org/10.36922/ijb.1011
   437   438   439   440   441   442   443   444   445   446   447