Page 442 - IJB-9-6
P. 442
International Journal of Bioprinting Versatile pomelo peel-inspired structures
45. Bi J, Lei Z, Chen Y, et al., 2021, An additively manufactured http://dx.doi.org/10.1016/j.compositesb.2022.110345
Al-14.1Mg-0.47Si-0.31Sc-0.17Zr alloy with high specific
strength, good thermal stability and excellent corrosion 55. Hu J, Tan ATL, Chen H, et al., 2022, Superior compressive
resistance. J Mater Sci Technol, 67: 23–35. properties of 3D printed plate lattice mechanical
metamaterials. Int J Mech Sci, 231: 107586.
http://dx.doi.org/10.1016/j.jmst.2020.06.036
http://dx.doi.org/10.1016/j.ijmecsci.2022.107586
46. Li R, Wang M, Yuan T, et al., 2017, Selective laser melting
of a novel Sc and Zr modified Al-6.2 Mg alloy: Processing, 56. Xiao L, Xu X, Feng G, et al., 2022, Compressive performance
microstructure, and properties. Powder Technol, 319: 117–128. and energy absorption of additively manufactured metallic
hybrid lattice structures. Int J Mech Sci, 219: 107093.
http://dx.doi.org/10.1016/j.powtec.2017.06.050
http://dx.doi.org/10.1016/j.ijmecsci.2022.107093
47. Li K, Ji C, Bai S, et al., 2023, Selective laser melting of
magnesium alloys: Necessity, formability, performance, 57. Zhang J, Liu Y, Babamiri BB, et al., 2022, Enhancing specific
optimization and applications. J Mater Sci Technol, 154: energy absorption of additively manufactured titanium
65–93. lattice structures through simultaneous manipulation of
architecture and constituent material. Addit Manuf, 55:
http://dx.doi.org/10.1016/j.jmst.2022.12.053 102887.
48. Kotadia HR, Gibbons G, Das A, et al., 2021, A review of laser http://dx.doi.org/10.1016/j.addma.2022.102887
powder bed fusion additive manufacturing of aluminium
alloys: Microstructure and properties. Addit Manuf, 46: 58. Yang J, Gu D, Lin K, et al., 2021, Laser additive manufacturing
102155. of cellular structure with enhanced compressive performance
inspired by Al–Si crystalline microstructure. CIRP J Manuf
http://dx.doi.org/10.1016/j.addma.2021.102155 Sci Technol, 32: 26–36.
49. Zhu Z, Hu Z, Seet HL, et al., 2023, Recent progress on the http://dx.doi.org/10.1016/j.cirpj.2020.11.003
additive manufacturing of aluminum alloys and aluminum
matrix composites: Microstructure, properties, and 59. Li C, Lei H, Liu Y, et al., 2018, Crushing behavior of multi-
applications. Int J Mach Tools Manuf, 190: 104047. layer metal lattice panel fabricated by selective laser melting.
Int J Mech Sci, 145: 389–399.
http://dx.doi.org/10.1016/j.ijmachtools.2023.104047
http://dx.doi.org/10.1016/j.ijmecsci.2018.07.029
50. Li R, Wang M, Li Z, et al., 2020, Developing a high-strength
Al-Mg-Si-Sc-Zr alloy for selective laser melting: Crack- 60. Al-Saedi DSJ, Masood SH, Faizan-Ur-Rab M, et al., 2018,
inhibiting and multiple strengthening mechanisms. Acta Mechanical properties and energy absorption capability of
Mater, 193: 83–98. functionally graded F2BCC lattice fabricated by SLM. Mater
Des, 144: 32–44.
http://dx.doi.org/10.1016/j.actamat.2020.03.060
http://dx.doi.org/10.1016/j.matdes.2018.01.059
51. Viale V, Stavridis J, Salmi A, et al., 2022, Optimisation of
downskin parameters to produce metallic parts via laser 61. Chen W, Gu D, Yang J, et al., 2022, Compressive mechanical
powder bed fusion process: an overview. Int J Adv Manuf properties and shape memory effect of NiTi gradient lattice
Technol, 123(7–8): 2159–2182. structures fabricated by laser powder bed fusion. Int J
Extreme Manuf, 4(4): 045002.
http://dx.doi.org/10.1007/s00170-022-10314-z
http://dx.doi.org/10.1088/2631-7990/ac8ef3
52. Han Q, Gu H, Soe S, et al., 2018, Manufacturability of 62. Yang X, Yang Q, Shi YS, et al., 2022, Effect of volume fraction
AlSi10Mg overhang structures fabricated by laser powder and unit cell size on manufacturability and compressive
bed fusion. Mater Des, 160: 1080–1095.
behaviors of Ni-Ti triply periodic minimal surface lattices.
http://dx.doi.org/10.1016/j.matdes.2018.10.043 Addit Manuf, 54: 102737.
53. Choy SY, Sun C-N, Sin WJ, et al., 2021, Superior energy http://dx.doi.org/10.1016/j.addma.2022.102737
absorption of continuously graded microlattices by electron 63. Ho JY, Wong KK, Leong KC, et al., 2017, Convective heat
beam additive manufacturing. Virtual Phys Prototyping, transfer performance of airfoil heat sinks fabricated by
16(1): 14–28. selective laser melting. Int J Therm Sci, 114: 213–228.
http://dx.doi.org/10.1080/17452759.2020.1868656 http://dx.doi.org/10.1016/j.ijthermalsci.2016.12.016
54. Gao Z, Wang H, Sun H, et al., 2022, Additively manufactured 64. Wong KK, Ho JY, Leong KC, et al., 2016, Fabrication of heat
high-energy-absorption metamaterials with artificially sinks by selective laser melting for convective heat transfer
engineered distribution of bio-inspired hierarchical applications. Virtual Phys Prototyp, 11(3): 159–165.
microstructures. Composites, Part B, 247: 110345.
http://dx.doi.org/10.1080/17452759.2016.1211849
Volume 9 Issue 6 (2023) 434 https://doi.org/10.36922/ijb.1011

