Page 441 - IJB-9-6
P. 441

International Journal of Bioprinting                                Versatile pomelo peel-inspired structures




            24.  Yue X, Shang J, Zhang M, et al., 2022, Additive manufacturing   by selective laser melting. Int J Heat Mass Transfer, 52(1–2):
               of high porosity magnesium scaffolds with lattice structure   281–288.
               and random structure. Mater Sci Eng A, 859: 144167.
                                                                  http://dx.doi.org/10.1016/j.ijheatmasstransfer.2008.06.002
               http://dx.doi.org/10.1016/j.msea.2022.144167
                                                               35.  Yang B, Chen W, Xin R, et al., 2022, Pomelo peel-inspired
            25.  Gomez S, Vlad MD, Lopez J,  et al., 2016, Design and   3D-printed porous structure for efficient absorption of
               properties of 3D scaffolds for bone tissue engineering. Acta   compressive strain energy. J Bionic Eng, 19(2): 448–457.
               Biomater, 42: 341–350.
                                                                  http://dx.doi.org/10.1007/s42235-021-00145-1
               http://dx.doi.org/10.1016/j.actbio.2016.06.032
                                                               36.  Zhang H, Gu D, Dai D, 2022, Laser printing path and its
            26.  Ge J, Huang J, Lei Y, et al., 2020, Microstructural features and   influence on molten pool configuration, microstructure and
               compressive properties of SLM Ti6Al4V lattice structures.   mechanical properties of laser powder bed fusion processed
               Surf Coat Technol, 403: 126419.                    rare  earth  element  modified  Al-Mg  alloy.  Virtual  Phys
               http://dx.doi.org/10.1016/j.surfcoat.2020.126419   Prototyping, 17(2): 308–328.
            27.  Tee YL, Maconachie T, Pille P, et al., 2021, From nature to   http://dx.doi.org/10.1080/17452759.2022.2036530
               additive manufacturing: Biomimicry of porcupine quill.   37.  Zhang H, Gu D, Dai D, et al., 2020, Influence of scanning
               Mater Des, 210: 110041.                            strategy and parameter on microstructural feature, residual
               http://dx.doi.org/10.1016/j.matdes.2021.110041     stress and performance of Sc and Zr modified Al–Mg alloy
                                                                  produced by selective laser melting. Mater Sci Eng A, 788:
            28.  Sheng X, Dong D, Lu X, et al., 2020, MXene-wrapped bio-  139593.
               based pomelo peel foam/polyethylene glycol composite
               phase change material with enhanced light-to-thermal   http://dx.doi.org/10.1016/j.msea.2020.139593
               conversion efficiency, thermal energy storage capability   38.  Zhang H, Gu D, Yang J, et al., 2018, Selective laser melting
               and thermal conductivity.  Composites, Part A, 138:   of rare earth element Sc modified aluminum alloy:
               106067.                                            Thermodynamics of precipitation behavior and its influence
                                                                  on mechanical properties. Addit Manuf, 23: 1–12.
               http://dx.doi.org/10.1016/j.compositesa.2020.106067
                                                                  http://dx.doi.org/10.1016/j.addma.2018.07.002
            29.  Zhang C, Xiao P, Ni F,  et al., 2020, Converting pomelo
               peel into eco-friendly and low-consumption photothermic   39.  Yang J, Gu D, Lin K, et al., 2022, Laser powder bed fusion
               biomass  sponge  toward multifunctioal  solar-to-heat   of mechanically efficient helicoidal structure inspired by
               conversion. ACS Sustainable Chem Eng, 8(13): 5328–5337.  mantis shrimp. Int J Mech Sci, 231: 107573.
               http://dx.doi.org/10.1021/acssuschemeng.0c00681    http://dx.doi.org/10.1016/j.ijmecsci.2022.107573
            30.  Buhrig-Polaczek A, Fleck C, Speck T, et al., 2016, Biomimetic   40.  Liu H, Gu D, Yang J, et al., 2022, Laser powder bed fusion
               cellular  metals-using  hierarchical  structuring  for  energy   of node-reinforced hybrid lattice structure inspired by
               absorption. Bioinspir Biomim, 11(4): 045002.       crystal  microstructure:  Structural  feature  sensitivity  and
                                                                  mechanical performance. Mater Sci Eng A, 858: 144048.
               http://dx.doi.org/10.1088/1748-3190/11/4/045002
                                                                  http://dx.doi.org/10.1016/j.msea.2022.144048
            31.  Fischer SF, Thielen M, Loprang RR, et al., 2010, Pummelos
               as concept generators for biomimetically inspired low   41.  Bünnagel C, Monir S, Sharp A, et al., 2021, Forced air cooled
                                                                  heat sink with uniformly distributed temperature of power
               weight structures with excellent damping properties.  Adv   electronic modules. Appl Therm Eng, 199: 117560.
               Eng Mater, 12(12): B658–B663.
                                                                  http://dx.doi.org/10.1016/j.applthermaleng.2021.117560
               http://dx.doi.org/10.1002/adem.201080065
                                                               42.  Liang D, Chen W, Ju Y,  et al., 2021, Comparing endwall
            32.  Zhang W, Yin S, Yu TX,  et  al., 2019, Crushing resistance   heat  transfer  among  staggered pin  fin,  Kagome  and  body
               and energy absorption of pomelo peel inspired hierarchical   centered cubic arrays. Appl Therm Eng, 185: 116306.
               honeycomb. Int J Impact Eng, 125: 163–172.
                                                                  http://dx.doi.org/10.1016/j.applthermaleng.2020.116306
               http://dx.doi.org/10.1016/j.ijimpeng.2018.11.014
                                                               43.  Gee DL, Webb RL, 1980, Forced convection heat transfer
            33.  Zhang Z, Song B, Yao Y,  et al., 2022, Bioinspired,   in helically rib-roughened tubes. Int J Heat Mass Transfer,
               simulation‐guided design of polyhedron metamaterial   23(8): 1127–1136.
               for simultaneously efficient heat dissipation and energy
               absorption. Adv Mater Technol, 7(10): 2200076.     http://dx.doi.org/https://doi.org/10.1016/0017-9310(80)90177-5
               http://dx.doi.org/10.1002/admt.202200076        44.  Chein R, Yang H, Tsai T-H, et al., 2009, Experimental study
                                                                  of heat sink performance using copper foams fabricated by
            34.  Wong M, Owen I, Sutcliffe CJ, et al., 2009, Convective heat   electroforming. Microsyst Technol, 16(7): 1157–1164.
               transfer and pressure losses across novel heat sinks fabricated
                                                                  http://dx.doi.org/10.1007/s00542-009-0950-y

            Volume 9 Issue 6 (2023)                        433                         https://doi.org/10.36922/ijb.1011
   436   437   438   439   440   441   442   443   444   445   446