Page 441 - IJB-9-6
P. 441
International Journal of Bioprinting Versatile pomelo peel-inspired structures
24. Yue X, Shang J, Zhang M, et al., 2022, Additive manufacturing by selective laser melting. Int J Heat Mass Transfer, 52(1–2):
of high porosity magnesium scaffolds with lattice structure 281–288.
and random structure. Mater Sci Eng A, 859: 144167.
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2008.06.002
http://dx.doi.org/10.1016/j.msea.2022.144167
35. Yang B, Chen W, Xin R, et al., 2022, Pomelo peel-inspired
25. Gomez S, Vlad MD, Lopez J, et al., 2016, Design and 3D-printed porous structure for efficient absorption of
properties of 3D scaffolds for bone tissue engineering. Acta compressive strain energy. J Bionic Eng, 19(2): 448–457.
Biomater, 42: 341–350.
http://dx.doi.org/10.1007/s42235-021-00145-1
http://dx.doi.org/10.1016/j.actbio.2016.06.032
36. Zhang H, Gu D, Dai D, 2022, Laser printing path and its
26. Ge J, Huang J, Lei Y, et al., 2020, Microstructural features and influence on molten pool configuration, microstructure and
compressive properties of SLM Ti6Al4V lattice structures. mechanical properties of laser powder bed fusion processed
Surf Coat Technol, 403: 126419. rare earth element modified Al-Mg alloy. Virtual Phys
http://dx.doi.org/10.1016/j.surfcoat.2020.126419 Prototyping, 17(2): 308–328.
27. Tee YL, Maconachie T, Pille P, et al., 2021, From nature to http://dx.doi.org/10.1080/17452759.2022.2036530
additive manufacturing: Biomimicry of porcupine quill. 37. Zhang H, Gu D, Dai D, et al., 2020, Influence of scanning
Mater Des, 210: 110041. strategy and parameter on microstructural feature, residual
http://dx.doi.org/10.1016/j.matdes.2021.110041 stress and performance of Sc and Zr modified Al–Mg alloy
produced by selective laser melting. Mater Sci Eng A, 788:
28. Sheng X, Dong D, Lu X, et al., 2020, MXene-wrapped bio- 139593.
based pomelo peel foam/polyethylene glycol composite
phase change material with enhanced light-to-thermal http://dx.doi.org/10.1016/j.msea.2020.139593
conversion efficiency, thermal energy storage capability 38. Zhang H, Gu D, Yang J, et al., 2018, Selective laser melting
and thermal conductivity. Composites, Part A, 138: of rare earth element Sc modified aluminum alloy:
106067. Thermodynamics of precipitation behavior and its influence
on mechanical properties. Addit Manuf, 23: 1–12.
http://dx.doi.org/10.1016/j.compositesa.2020.106067
http://dx.doi.org/10.1016/j.addma.2018.07.002
29. Zhang C, Xiao P, Ni F, et al., 2020, Converting pomelo
peel into eco-friendly and low-consumption photothermic 39. Yang J, Gu D, Lin K, et al., 2022, Laser powder bed fusion
biomass sponge toward multifunctioal solar-to-heat of mechanically efficient helicoidal structure inspired by
conversion. ACS Sustainable Chem Eng, 8(13): 5328–5337. mantis shrimp. Int J Mech Sci, 231: 107573.
http://dx.doi.org/10.1021/acssuschemeng.0c00681 http://dx.doi.org/10.1016/j.ijmecsci.2022.107573
30. Buhrig-Polaczek A, Fleck C, Speck T, et al., 2016, Biomimetic 40. Liu H, Gu D, Yang J, et al., 2022, Laser powder bed fusion
cellular metals-using hierarchical structuring for energy of node-reinforced hybrid lattice structure inspired by
absorption. Bioinspir Biomim, 11(4): 045002. crystal microstructure: Structural feature sensitivity and
mechanical performance. Mater Sci Eng A, 858: 144048.
http://dx.doi.org/10.1088/1748-3190/11/4/045002
http://dx.doi.org/10.1016/j.msea.2022.144048
31. Fischer SF, Thielen M, Loprang RR, et al., 2010, Pummelos
as concept generators for biomimetically inspired low 41. Bünnagel C, Monir S, Sharp A, et al., 2021, Forced air cooled
heat sink with uniformly distributed temperature of power
weight structures with excellent damping properties. Adv electronic modules. Appl Therm Eng, 199: 117560.
Eng Mater, 12(12): B658–B663.
http://dx.doi.org/10.1016/j.applthermaleng.2021.117560
http://dx.doi.org/10.1002/adem.201080065
42. Liang D, Chen W, Ju Y, et al., 2021, Comparing endwall
32. Zhang W, Yin S, Yu TX, et al., 2019, Crushing resistance heat transfer among staggered pin fin, Kagome and body
and energy absorption of pomelo peel inspired hierarchical centered cubic arrays. Appl Therm Eng, 185: 116306.
honeycomb. Int J Impact Eng, 125: 163–172.
http://dx.doi.org/10.1016/j.applthermaleng.2020.116306
http://dx.doi.org/10.1016/j.ijimpeng.2018.11.014
43. Gee DL, Webb RL, 1980, Forced convection heat transfer
33. Zhang Z, Song B, Yao Y, et al., 2022, Bioinspired, in helically rib-roughened tubes. Int J Heat Mass Transfer,
simulation‐guided design of polyhedron metamaterial 23(8): 1127–1136.
for simultaneously efficient heat dissipation and energy
absorption. Adv Mater Technol, 7(10): 2200076. http://dx.doi.org/https://doi.org/10.1016/0017-9310(80)90177-5
http://dx.doi.org/10.1002/admt.202200076 44. Chein R, Yang H, Tsai T-H, et al., 2009, Experimental study
of heat sink performance using copper foams fabricated by
34. Wong M, Owen I, Sutcliffe CJ, et al., 2009, Convective heat electroforming. Microsyst Technol, 16(7): 1157–1164.
transfer and pressure losses across novel heat sinks fabricated
http://dx.doi.org/10.1007/s00542-009-0950-y
Volume 9 Issue 6 (2023) 433 https://doi.org/10.36922/ijb.1011

