Page 572 - IJB-9-6
P. 572
International Journal of Bioprinting Osteogenic, antibacterial CpTi-MgOCu implants
31. Guo L, Ataollah Naghavi S, Wang Z, et al., 2022, On the 42. Afrouzian A, Groden CJ, Field DP, et al., 2002, Additive
design evolution of hip implants: A review. Mater Des, 216: manufacturing of Ti-Ni bimetallic structures. Mater Des,
110552. 215: 110461.
https://doi.org/10.1016/j.matdes.2022.110552 https://doi.org/10.1016/j.matdes.2022.110461
32. Lionberger D, Conlon C, Wattenbarger L, et al., 2019, 43. Newby E, Yadroitsava I, Krakhmalev P, et al., 2019,
Unacceptable failure rate of a ceramic-coated posterior Investigation of in-situ alloying grade 23 Ti with 5 at . %
cruciate-substituting total knee arthroplasty. Arthroplast Cu by laser powder bed fusion for biomedical applications.
Today, 5(2): 187–192. Mater Sci, 197859609.
https://doi.org/10.1016/j.artd.2019.02.002 44. Svetlizky D, Das M, Zheng B, et al., 2021, Directed energy
deposition (DED) additive manufacturing: Physical
33. Bandyopadhyay A, Ciliveri S, Bose S, 2022, Metal additive
manufacturing for load-bearing implants. J Indian Inst Sci, characteristics, defects, challenges and applications. Mater
102.1(2022): 561–584 Today, 49: 271–295.
https://doi.org/10.1016/j.mattod.2021.03.020
https://doi.org/10.1007/s41745-021-00281-x
45. Assael MJ, Kalyva AE, Antoniadis KD, et al., 2010, Reference
34. Traxel KD, Bandyopadhyay A, 2022, Selective laser melting data for the density and viscosity of liquid copper and liquid
of Ti6Al4V-B4C-BN in situ reactive composites. J Mater Res tin. J Phys Chem Ref Data, 39(3): 033105.
Technol, 18: 2654–2671.
https://doi.org/10.1063/1.3467496
https://doi.org/10.1016/j.jmrt.2022.03.092
46. Paradis P-F, Ishikawa T, Yoda S, 2002, Non-contact
35. Taniguchi N, Fujibayashi S, Takemoto M, et al., 2016,
Effect of pore size on bone ingrowth into porous titanium measurements of surface tension and viscosity of niobium,
implants fabricated by additive manufacturing: An in vivo zirconium, and titanium using an electrostatic levitation
experiment. Mater Sci Eng C, 59: 690–701. furnace. Int J Thermophys, 23(3): 825–842.
https://doi.org/10.1023/A:1015459222027
https://doi.org/10.1016/j.msec.2015.10.069
47. Mosallanejad MH, Niroumand B, Aversa A, et al., 2021,
36. Ouyang P, Dong H, He X, et al., 2019, Hydromechanical
mechanism behind the effect of pore size of porous titanium Laser powder bed fusion in-situ alloying of Ti-5%Cu alloy:
Process-structure relationships. J Alloys Compd, 857: 157558.
scaffolds on osteoblast response and bone ingrowth. Mater
Des, 183: 108151. https://doi.org/10.1016/j.jallcom.2020.157558
https://doi.org/10.1016/j.matdes.2019.108151 48. Ciliveri S, Mitra I, Bose S, et al., 2022, Effects of oxide ceramic
37. Imai K, Ikeshoji T-T, Sugitani Y, et al., 2020, Densification of addition on biocompatibility of titanium, in Metal-Matrix
pure copper by selective laser melting process. Mech Eng J, Composites, Srivatsan TS, Rohatgi PK, Hunyadi Murph S,
7(2): 19-00272-19–00272. eds., Springer International Publishing, Cham, 323–334.
https://doi.org/10.1007/978-3-030-92567-3_20
https://doi.org/10.1299/mej.19-00272
49. Onuike B, Heer B, Bandyopadhyay A, 2018, Additive
38. Guschlbauer R, Burkhardt AK, Fu Z, et al., 2020, Effect
of the oxygen content of pure copper powder on selective Manufacturing of Inconel 718 – Copper Alloy Bimetallic
electron beam melting. Mater Sci Eng A, 779: 139106. Structure using Laser Engineered Net Shaping. Addit Manuf,
21: 133–140.
https://doi.org/10.1016/j.msea.2020.139106
https://doi.org/10.1016/j.addma.2018.02.007
39. Mitra I, Bose S, Dernell WS, et al., 2021, 3D printing in alloy
design to improve biocompatibility in metallic implants. 50. Kikuchi M, Takada Y, Kiyosue S, et al., 2003, Mechanical
Mater Today, 45: 20–34. properties and microstructures of cast Ti–Cu alloys. Dent
Mater, 19(3): 174–181.
https://doi.org/10.1016/j.mattod.2020.11.021
https://doi.org/10.1016/S0109-5641(02)00027-1
40. Hall M, Frank E, Holmes G, et al., 2009, The WEKA data
mining software: An update. ACM SIGKDD Explor Newsl, 51. Zhang L, Chang M, Beck CA, et al., 2016, Analysis of
11(1): 10–18. new bone, cartilage, and fibrosis tissue in healing murine
allografts using whole slide imaging and a new automated
https://doi.org/10.1145/1656274.1656278 histomorphometric algorithm. Bone Res, 4: 15037.
41. Arganda-Carreras I, Kaynig V, Rueden C, et al., 2017, https://doi.org/10.1038/boneres.2015.37
Trainable Weka segmentation: A machine learning tool
for microscopy pixel classification. Bioinformatics, 33(15): 52. Itabashi T, Narita K, Ono A, et al., 2017, Bactericidal and
2424–2426. antimicrobial effects of pure titanium and titanium alloy
treated with short-term, low-energy UV irradiation. Bone Jt
https://doi.org/10.1093/bioinformatics/btx180 Res, 6(2): 108–112.
Volume 9 Issue 6 (2023) 564 https://doi.org/10.36922/ijb.1167

