Page 572 - IJB-9-6
P. 572

International Journal of Bioprinting                           Osteogenic, antibacterial CpTi-MgOCu implants




            31.  Guo L, Ataollah Naghavi S, Wang Z,  et al., 2022, On the   42.  Afrouzian A, Groden CJ, Field DP,  et al., 2002, Additive
               design evolution of hip implants: A review. Mater Des, 216:   manufacturing of Ti-Ni bimetallic structures.  Mater Des,
               110552.                                            215: 110461.
               https://doi.org/10.1016/j.matdes.2022.110552       https://doi.org/10.1016/j.matdes.2022.110461
            32.  Lionberger D, Conlon C, Wattenbarger L,  et al., 2019,   43.  Newby  E,  Yadroitsava  I,  Krakhmalev P,  et  al.,  2019,
               Unacceptable failure rate of a ceramic-coated posterior   Investigation of in-situ alloying grade 23 Ti with 5 at . %
               cruciate-substituting total knee arthroplasty.  Arthroplast   Cu by laser powder bed fusion for biomedical applications.
               Today, 5(2): 187–192.                              Mater Sci, 197859609.
               https://doi.org/10.1016/j.artd.2019.02.002      44.  Svetlizky D, Das M, Zheng B, et al., 2021, Directed energy
                                                                  deposition (DED) additive manufacturing:  Physical
            33.  Bandyopadhyay A, Ciliveri S, Bose S, 2022, Metal additive
               manufacturing for load-bearing implants. J Indian Inst Sci,   characteristics, defects, challenges and applications. Mater
               102.1(2022): 561–584                               Today, 49: 271–295.
                                                                  https://doi.org/10.1016/j.mattod.2021.03.020
               https://doi.org/10.1007/s41745-021-00281-x
                                                               45.  Assael MJ, Kalyva AE, Antoniadis KD, et al., 2010, Reference
            34.  Traxel KD, Bandyopadhyay A, 2022, Selective laser melting   data for the density and viscosity of liquid copper and liquid
               of Ti6Al4V-B4C-BN in situ reactive composites. J Mater Res   tin. J Phys Chem Ref Data, 39(3): 033105.
               Technol, 18: 2654–2671.
                                                                  https://doi.org/10.1063/1.3467496
               https://doi.org/10.1016/j.jmrt.2022.03.092
                                                               46.  Paradis P-F, Ishikawa T, Yoda S, 2002, Non-contact
            35.  Taniguchi N, Fujibayashi S, Takemoto M,  et al., 2016,
               Effect of pore size on bone ingrowth into porous titanium   measurements of surface tension and viscosity of niobium,
               implants fabricated by additive manufacturing: An in vivo   zirconium, and titanium using an electrostatic levitation
               experiment. Mater Sci Eng C, 59: 690–701.          furnace. Int J Thermophys, 23(3): 825–842.
                                                                  https://doi.org/10.1023/A:1015459222027
               https://doi.org/10.1016/j.msec.2015.10.069
                                                               47.  Mosallanejad  MH,  Niroumand  B, Aversa  A,  et al.,  2021,
            36.  Ouyang P, Dong H, He X,  et al., 2019, Hydromechanical
               mechanism behind the effect of pore size of porous titanium   Laser powder bed fusion in-situ alloying of Ti-5%Cu alloy:
                                                                  Process-structure relationships. J Alloys Compd, 857: 157558.
               scaffolds on osteoblast response and bone ingrowth. Mater
               Des, 183: 108151.                                  https://doi.org/10.1016/j.jallcom.2020.157558
               https://doi.org/10.1016/j.matdes.2019.108151    48.  Ciliveri S, Mitra I, Bose S, et al., 2022, Effects of oxide ceramic
            37.  Imai K, Ikeshoji T-T, Sugitani Y, et al., 2020, Densification of   addition on biocompatibility of titanium, in Metal-Matrix
               pure copper by selective laser melting process. Mech Eng J,   Composites, Srivatsan TS, Rohatgi PK, Hunyadi Murph S,
               7(2): 19-00272-19–00272.                           eds., Springer International Publishing, Cham, 323–334.
                                                                  https://doi.org/10.1007/978-3-030-92567-3_20
               https://doi.org/10.1299/mej.19-00272
                                                               49.  Onuike B, Heer B, Bandyopadhyay A, 2018, Additive
            38.  Guschlbauer R, Burkhardt AK, Fu Z,  et al., 2020, Effect
               of the oxygen content of pure copper powder on selective   Manufacturing of Inconel 718 – Copper Alloy Bimetallic
               electron beam melting. Mater Sci Eng A, 779: 139106.   Structure using Laser Engineered Net Shaping. Addit Manuf,
                                                                  21: 133–140.
               https://doi.org/10.1016/j.msea.2020.139106
                                                                  https://doi.org/10.1016/j.addma.2018.02.007
            39.  Mitra I, Bose S, Dernell WS, et al., 2021, 3D printing in alloy
               design to improve biocompatibility in metallic implants.   50.  Kikuchi M, Takada Y, Kiyosue S, et al., 2003, Mechanical
               Mater Today, 45: 20–34.                            properties and microstructures of cast Ti–Cu alloys. Dent
                                                                  Mater, 19(3): 174–181.
               https://doi.org/10.1016/j.mattod.2020.11.021
                                                                  https://doi.org/10.1016/S0109-5641(02)00027-1
            40.  Hall M, Frank E, Holmes G, et al., 2009, The WEKA data
               mining software: An update. ACM SIGKDD Explor Newsl,   51.  Zhang L, Chang M, Beck CA,  et al., 2016, Analysis of
               11(1): 10–18.                                      new bone, cartilage, and fibrosis tissue in healing murine
                                                                  allografts using whole slide imaging and a new automated
               https://doi.org/10.1145/1656274.1656278            histomorphometric algorithm. Bone Res, 4: 15037.
            41.  Arganda-Carreras  I, Kaynig  V, Rueden  C,  et al.,  2017,   https://doi.org/10.1038/boneres.2015.37
               Trainable Weka segmentation: A machine learning tool
               for microscopy pixel classification.  Bioinformatics, 33(15):   52.  Itabashi T, Narita K, Ono A, et al., 2017, Bactericidal and
               2424–2426.                                         antimicrobial effects of pure titanium and titanium alloy
                                                                  treated with short-term, low-energy UV irradiation. Bone Jt
               https://doi.org/10.1093/bioinformatics/btx180      Res, 6(2): 108–112.


            Volume 9 Issue 6 (2023)                        564                          https://doi.org/10.36922/ijb.1167
   567   568   569   570   571   572   573   574   575   576