Page 571 - IJB-9-6
P. 571
International Journal of Bioprinting Osteogenic, antibacterial CpTi-MgOCu implants
10. Fielding G, Bose S, 2013, SiO2 and ZnO dopants in three- https://doi.org/10.1016/j.biomaterials.2005.10.003
dimensionally printed tricalcium phosphate bone tissue 21. Xia X, Huang J, Wei J, et al., 2022, Magnesium oxide regulates
engineering scaffolds enhance osteogenesis and angiogenesis the degradation behaviors and improves the osteogenesis of
in vivo. Acta Biomater, 9(11): 9137–9148.
poly(lactide-co-glycolide) composite scaffolds. Compos Sci
https://doi.org/10.1016/j.actbio.2013.07.009 Technol, 222: 109368.
11. Libraty DH, Patkar C, Torres B, 2012, Staphylococcus aureus https://doi.org/10.1016/j.compscitech.2022.109368
reactivation osteomyelitis after 75 years. N Engl J Med, 22. Zhao Y, Liang H, Zhang S, et al., 2020, Effects of magnesium
366(5): 481–482.
oxide (MgO) shapes on in vitro and in vivo degradation
https://doi.org/10.1056/NEJMc1111493 behaviors of PLA/MgO composites in long term. Polymers,
12(5): 1074.
12. Macheras GA, Kateros K, Galanakos SP, et al., 2011, The
long-term results of a two-stage protocol for revision of an https://doi.org/10.3390/polym12051074
infected total knee replacement. J Bone Joint Surg Br, 93(11): 23. Zreiqat H, Howlett CR, Zannettino A, et al., 2002,
1487–1492.
Mechanisms of magnesium-stimulated adhesion of
https://doi.org/10.1302/0301-620X.93B11.27319 osteoblastic cells to commonly used orthopaedic implants.
J Biomed Mater Res, 62(2): 175–184.
13. Windsor RE, Insall JN, Urs WK, et al., 1990, Two-stage
reimplantation for the salvage of total knee arthroplasty https://doi.org/10.1002/jbm.10270
complicated by infection. Further follow-up and refinement 24. Niknam Z, Golchin A, Rezaei-Tavirani M, et al., 2022,
of indications. J Bone Joint Surg Am, 72(2): 272–278.
Osteogenic differentiation potential of adipose-derived
14. Buechel FF, 2004, The infected total knee arthroplasty: Just mesenchymal stem cells cultured on magnesium oxide/
when you thought it was over. J Arthroplasty, 19(4 Suppl 1): polycaprolactone nanofibrous scaffolds for improving
51–55. bone tissue reconstruction. Adv Pharm Bull, 12(1):
142–154.
https://doi.org/10.1016/j.arth.2004.03.001
https://doi.org/10.34172/apb.2022.015
15. Zmistowski BM, 2013, A Quarter of Patients Treated for PJI
Dead Within 5 Years. 25. Roy M, Balla VK, Bandyopadhyay A, et al., 2012, MgO-
doped tantalum coating on Ti: Microstructural study and
https://www.healio.com/news/orthopedics/20130104/a-
quarter-of-patients-treated-for-pji-dead-within-5-years biocompatibility evaluation. ACS Appl Mater Interfaces,
(accessed 2023-06-11). 4(2): 577–580.
https://doi.org/10.1021/am201365e
16. O’Neill J, 2016, Tackling Drug-Resistant Infections Globally:
Final Report and Recommendations. Government of the 26. Xue W, Dahlquist K, Banerjee A, et al., 2008, Synthesis and
United Kingdom, United Kingdom. characterization of tricalcium phosphate with Zn and Mg
based dopants. J Mater Sci Mater Med, 19(7): 2669–2677.
https://apo.org.au/node/63983 (accessed 2023-06-11).
https://doi.org/10.1007/s10856-008-3395-4
17. Nishiguchi S, Nakamura T, Kobayashi M, et al., 1999, The
effect of heat treatment on bone-bonding ability of alkali- 27. Kim D-H, Shin K-K, Jung JS, et al., 2015, The role of
treated titanium. Biomaterials, 20(5): 491–500. magnesium ion substituted biphasic calcium phosphate
spherical micro-scaffolds in osteogenic differentiation of
https://doi.org/10.1016/S0142-9612(98)90203-4
human adipose tissue-derived mesenchymal stem cells. J
18. Tang J, Wu Z, Yao X, et al., 2022, From bio-inertness to Nanosci Nanotechnol, 15(8): 5520–5523.
osseointegration and antibacterial activity: A one-step
micro-arc oxidation approach for multifunctional Ti https://doi.org/10.1166/jnn.2015.10463
implants fabricated by additive manufacturing. Mater Des, 28. 2017, Long-lived biomaterials. Nat Biomed Eng, 1(6): 1–1.
221: 110962.
https://www.nature.com/articles/s41551-017-0095#citeas
https://doi.org/10.2139/ssrn.4121117
29. Mohammadi H, Sepantafar M, 2015, Ion-doped silicate
19. Costello RB, Rosanoff A, 2020, Magnesium, in Present bioceramic coating of Ti-based implant. Iran Biomed J, 20:
Knowledge in Nutrition (Eleventh Edition). Marriott BP, Birt 189–200.
DF, Stallings VA, et al., eds., Academic Press, Cambridge, https://doi.org/10.7508/ibj.2016.04.002
MA, 349–373.
30. Breme J, Zhou Y, Groh L, 1995, Development of a titanium
https://doi.org/10.1016/B978-0-323-66162-1.00021-4
alloy suitable for an optimized coating with hydroxyapatite.
20. Staiger MP, Pietak AM, Huadmai J, et al., 2006, Magnesium Biomaterials, 16(3): 239–244.
and its alloys as orthopedic biomaterials: A review. https://doi.org/10.1016/0142-9612(95)92123-N
Biomaterials, 27(9): 1728–1734.
Volume 9 Issue 6 (2023) 563 https://doi.org/10.36922/ijb.1167

