Page 571 - IJB-9-6
P. 571

International Journal of Bioprinting                           Osteogenic, antibacterial CpTi-MgOCu implants




            10.  Fielding G, Bose S, 2013, SiO2 and ZnO dopants in three-  https://doi.org/10.1016/j.biomaterials.2005.10.003
               dimensionally  printed  tricalcium  phosphate  bone  tissue   21.  Xia X, Huang J, Wei J, et al., 2022, Magnesium oxide regulates
               engineering scaffolds enhance osteogenesis and angiogenesis   the degradation behaviors and improves the osteogenesis of
               in vivo. Acta Biomater, 9(11): 9137–9148.
                                                                  poly(lactide-co-glycolide) composite scaffolds. Compos Sci
               https://doi.org/10.1016/j.actbio.2013.07.009       Technol, 222: 109368.
            11.  Libraty DH, Patkar C, Torres B, 2012, Staphylococcus aureus   https://doi.org/10.1016/j.compscitech.2022.109368
               reactivation osteomyelitis after 75 years.  N Engl J Med,   22.  Zhao Y, Liang H, Zhang S, et al., 2020, Effects of magnesium
               366(5): 481–482.
                                                                  oxide (MgO) shapes on in vitro and in vivo degradation
               https://doi.org/10.1056/NEJMc1111493               behaviors of PLA/MgO composites in long term. Polymers,
                                                                  12(5): 1074.
            12.  Macheras GA, Kateros K, Galanakos SP,  et al., 2011, The
               long-term results of a two-stage protocol for revision of an   https://doi.org/10.3390/polym12051074
               infected total knee replacement. J Bone Joint Surg Br, 93(11):   23.  Zreiqat H, Howlett CR, Zannettino A,  et al., 2002,
               1487–1492.
                                                                  Mechanisms of magnesium-stimulated adhesion of
               https://doi.org/10.1302/0301-620X.93B11.27319      osteoblastic cells to commonly used orthopaedic implants.
                                                                  J Biomed Mater Res, 62(2): 175–184.
            13.  Windsor RE, Insall JN, Urs WK,  et al., 1990, Two-stage
               reimplantation for the salvage of total knee arthroplasty   https://doi.org/10.1002/jbm.10270
               complicated by infection. Further follow-up and refinement   24.  Niknam Z, Golchin A, Rezaei-Tavirani M,  et al., 2022,
               of indications. J Bone Joint Surg Am, 72(2): 272–278.
                                                                  Osteogenic differentiation potential of adipose-derived
            14.  Buechel FF, 2004, The infected total knee arthroplasty: Just   mesenchymal stem cells cultured on magnesium oxide/
               when you thought it was over. J Arthroplasty, 19(4 Suppl 1):   polycaprolactone nanofibrous scaffolds for improving
               51–55.                                             bone tissue reconstruction.  Adv Pharm Bull, 12(1):
                                                                  142–154.
               https://doi.org/10.1016/j.arth.2004.03.001
                                                                  https://doi.org/10.34172/apb.2022.015
            15.  Zmistowski BM, 2013, A Quarter of Patients Treated for PJI
               Dead Within 5 Years.                            25.  Roy M, Balla VK, Bandyopadhyay A,  et al., 2012, MgO-
                                                                  doped tantalum coating on Ti: Microstructural study and
               https://www.healio.com/news/orthopedics/20130104/a-
               quarter-of-patients-treated-for-pji-dead-within-5-years   biocompatibility evaluation.  ACS Appl Mater Interfaces,
               (accessed 2023-06-11).                             4(2): 577–580.
                                                                  https://doi.org/10.1021/am201365e
            16.  O’Neill J, 2016, Tackling Drug-Resistant Infections Globally:
               Final Report and Recommendations. Government of the   26.  Xue W, Dahlquist K, Banerjee A, et al., 2008, Synthesis and
               United Kingdom, United Kingdom.                    characterization of tricalcium phosphate with Zn and Mg
                                                                  based dopants. J Mater Sci Mater Med, 19(7): 2669–2677.
               https://apo.org.au/node/63983 (accessed 2023-06-11).
                                                                  https://doi.org/10.1007/s10856-008-3395-4
            17.  Nishiguchi S, Nakamura T, Kobayashi M, et al., 1999, The
               effect of heat treatment on bone-bonding ability of alkali-  27.  Kim D-H, Shin K-K, Jung JS,  et  al., 2015, The role of
               treated titanium. Biomaterials, 20(5): 491–500.    magnesium ion substituted biphasic calcium phosphate
                                                                  spherical micro-scaffolds in osteogenic differentiation of
               https://doi.org/10.1016/S0142-9612(98)90203-4
                                                                  human adipose tissue-derived mesenchymal stem cells.  J
            18.  Tang J, Wu Z, Yao X,  et al., 2022, From bio-inertness to   Nanosci Nanotechnol, 15(8): 5520–5523.
               osseointegration  and  antibacterial  activity:  A  one-step
               micro-arc oxidation approach for multifunctional Ti   https://doi.org/10.1166/jnn.2015.10463
               implants fabricated by additive manufacturing. Mater Des,   28.  2017, Long-lived biomaterials. Nat Biomed Eng, 1(6): 1–1.
               221: 110962.
                                                                  https://www.nature.com/articles/s41551-017-0095#citeas
               https://doi.org/10.2139/ssrn.4121117
                                                               29.  Mohammadi H, Sepantafar M, 2015, Ion-doped silicate
            19.  Costello RB, Rosanoff A, 2020, Magnesium, in  Present   bioceramic coating of Ti-based implant. Iran Biomed J, 20:
               Knowledge in Nutrition (Eleventh Edition). Marriott BP, Birt   189–200.
               DF, Stallings VA, et al., eds., Academic Press, Cambridge,   https://doi.org/10.7508/ibj.2016.04.002
               MA, 349–373.
                                                               30.  Breme J, Zhou Y, Groh L, 1995, Development of a titanium
               https://doi.org/10.1016/B978-0-323-66162-1.00021-4
                                                                  alloy suitable for an optimized coating with hydroxyapatite.
            20.  Staiger MP, Pietak AM, Huadmai J, et al., 2006, Magnesium   Biomaterials, 16(3): 239–244.
               and  its  alloys  as  orthopedic  biomaterials:  A  review.   https://doi.org/10.1016/0142-9612(95)92123-N
               Biomaterials, 27(9): 1728–1734.


            Volume 9 Issue 6 (2023)                        563                          https://doi.org/10.36922/ijb.1167
   566   567   568   569   570   571   572   573   574   575   576