Page 573 - IJB-9-6
P. 573

International Journal of Bioprinting                           Osteogenic, antibacterial CpTi-MgOCu implants




               https://doi.org/10.1302/2046-3758.62.2000619    62.  Singh S, Vashisth P, Shrivastav A, et al., 2019, Synthesis and
                                                                  characterization of a novel open cellular Mg-based scaffold
            53.  Arciola CR, Campoccia D, Montanaro L, 2018, Implant
               infections: Adhesion, biofilm formation and immune   for tissue engineering application.  J Mech Behav Biomed
               evasion. Nat Rev Microbiol, 16(7): 397–409.        Mater, 94(2019): 54–62.
                                                                  https://doi.org/10.1016/j.jmbbm.2019.02.010
               https://doi.org/10.1038/s41579-018-0019-y
                                                               63.  Chakraborty Banerjee P, Al-Saadi S, Choudhary L,  et al.,
            54.  O’Driscoll NH, Cushnie TPT, Matthews KH,  et al., 2018,
               Colistin causes profound morphological alteration but   2019, Magnesium implants: Prospects and challenges.
               minimal cytoplasmic membrane perforation in populations   Materials, 12(1): 136.
               of Escherichia coli and Pseudomonas aeruginosa.  Arch   https://doi.org/10.3390/ma12010136
               Microbiol, 200(5): 793–802.
                                                               64.  Dollwet HHA, Sorenson JRJ, 1985, Historic uses of copper
               https://doi.org/10.1007/s00203-018-1485-3          compounds in medicine. Trace Elem Med, 2(2): 80–87.
            55.  Centeno C, 2021,  The Evidence Supporting Common   65.  Grass G,  Rensing  C, Solioz M, 2011,  Metallic  copper  as
               Orthopedic Surgeries Is AWFUL. Regenexx.           an antimicrobial surface.  Appl  Environ Microbiol, 77(5):
                                                                  1541–1547.
               https://regenexx.com/blog/the-evidence-supporting-
               common-orthopedic-surgeries-is-awful/ (accessed 2023-  https://doi.org/10.1128/AEM.02766-10
               06-20).
                                                               66.  EPA Press Office, 2021, EPA Registers Copper Surfaces for
            56.  Shukla D, Patel S, Clack L, et al., 2021, Retrospective analysis   Residual Use Against Coronavirus.
               of trends in surgery volumes between 2016 and 2019 and   https://www.epa.gov/newsreleases/epa-registers-copper-
               impact of the insurance deductible: Cross-sectional study.   surfaces-residual-use-against-coronavirus (accessed 2023-
               Ann Med Surg, 63: 102176.
                                                                  06-20).
               https://doi.org/10.1016/j.amsu.2021.02.022
                                                               67.  Tchounwou PB, Newsome C, Williams J,  et al., 2008,
            57.  Orthopedic Surgery Fact Sheet from the National   Copper-induced cytotoxicity and transcriptional activation
               Ambulatory Medical Care Survey.                    of stress genes in human liver carcinoma (HepG2) cells. Met
                                                                  Ions Biol Med, 10: 285–290.
               https://www.cdc.gov/nchs/data/namcs/factsheets/NAMCS-
               2015-16-Orthopedic-Surgery-508.pdf              68.  Liu R, Memarzadeh K, Chang B, et al., 2016, Antibacterial
                                                                  effect of copper-bearing titanium alloy (Ti-Cu) against
            58.  Clark D, Nakamura M, Miclau T, et al., 2017, Effects of aging
               on fracture healing. Curr Osteoporos Rep, 15(6): 601–608.   Streptococcus Mutans and Porphyromonas gingivalis. Sci Rep,
                                                                  6: 29985.
               https://doi.org/10.1007/s11914-017-0413-9
                                                                  https://doi.org/10.1038/srep29985
            59.  Tarafder S, Dernell WS, Bandyopadhyay A, et al., 2015, SrO-
               and MgO-doped microwave sintered 3D printed tricalcium   69.  Liu R, Tang Y, Zeng L,  et al., 2018, In vitro and in vivo
               phosphate scaffolds: Mechanical properties and in vivo   studies of antibacterial copper-bearing titanium alloy for
                                                                  dental application. Dent Mater, 34(8): 1112–1126.
               osteogenesis in a rabbit model. J Biomed Mater Res B Appl
               Biomater, 103(3): 679–690.                         https://doi.org/10.1016/j.dental.2018.04.007
               https://doi.org/10.1002/jbm.b.33239             70.  Zhang  E,  Li  F,  Wang  H,  et al.,  2013,  A  new  antibacterial
                                                                  titanium–copper  sintered  alloy:  Preparation  and
            60.  Nandi SK, Roy M, Bandyopadhyay A, et al., 2023, In vivo
               biocompatibility of SrO and MgO doped brushite cements.    antibacterial property. Mater Sci Eng C, 33(7): 4280–4287.
               J Biomed Mater Res B Appl Biomater, 111(3): 599–609.   https://doi.org/10.1016/j.msec.2013.06.016
               https://doi.org/10.1002/jbm.b.35177             71.  Liu J, Li F, Liu C, et al., 2014, Effect of Cu content on the
                                                                  antibacterial activity of titanium–copper sintered alloys.
            61.  Schmitz C, Deason F, Perraud A-L, 2007, Molecular
               components of  vertebrate  Mg2+-homeostasis  regulation.   Mater Sci Eng C, 35(2014): 392–400.
               Magnes Res, 20(1): 6–18.                           https://doi.org/10.1016/j.msec.2013.11.028














            Volume 9 Issue 6 (2023)                        565                          https://doi.org/10.36922/ijb.1167
   568   569   570   571   572   573   574   575   576