Page 139 - v11i4
P. 139

International Journal of Bioprinting                                3D bioprinting for translational toxicology




            185. Johnston LJ, Gonzalez-Rojano N, Wilkinson KJ, Xing B.   196. Janani G, Priya S, Dey S, Mandal BB. Mimicking native
               Key challenges for evaluation of the safety of engineered   liver lobule microarchitecture in vitro with parenchymal
               nanomaterials. NanoImpact. 2020;18:100219.         and non-parenchymal cells using 3D bioprinting for drug
               doi: 10.1016/j.impact.2020.100219                  toxicity and drug screening applications. ACS Appl Mater
                                                                  Interfaces. 2022;14(8):10167-10186.
            186. Clark KA, White RH, Silbergeld EK. Predictive models for      doi: 10.1021/acsami.2c00312
               nanotoxicology: current challenges and future opportunities.
               Regul Toxicol Pharmacol. 2011;59(3):361-363.    197. Ali ASM, Berg J, Roehrs V, et al. Xeno-free 3D bioprinted
               doi: 10.1016/j.yrtph.2011.02.002                   liver model for hepatotoxicity assessment.  Int J Mol Sci.
                                                                  2024;25(3):1811.
            187. Yi HG, Kim H, Kwon J, Choi YJ, Jang J, Cho DW.      doi: 10.3390/ijms25031811
               Application of 3D bioprinting in the prevention and the
               therapy for human diseases. Sig Transduct Target Ther. 2021;   198. Khanal D, Zhang F, Song Y,  et  al. Biological impact of
               6(1):1-17.                                         nanodiamond particles – label free, high-resolution
               doi: 10.1038/s41392-021-00566-8                    methods for nanotoxicity assessment.  Nanotoxicology.
                                                                  2019;13(9):1210-1226.
            188. Blaeser  A, Duarte  Campos  DF,  Puster  U,  Richtering  W,      doi: 10.1080/17435390.2019.1650970
               Stevens MM, Fischer H. Controlling shear stress in 3D
               bioprinting is a key factor to balance printing resolution and   199. Singh NK, Kim JY, Jang J, Kim YK, Cho DW. 3D cell printing
               stem cell integrity. Adv Healthc Mater. 2016;5(3):326-333.  of advanced vascularized proximal tubule-on-a-chip for
               doi: 10.1002/adhm.201500677                        drug induced nephrotoxicity advancement.  ACS Appl Bio
                                                                  Mater. 2023;6(9):3750-3758.
            189. Liang S, Luo Y, Su Y, et al. Distinct toxicity of microplastics/     doi: 10.1021/acsabm.3c00421
               TBBPA co-exposure to bioprinted liver organoids
               derived from hiPSCs of healthy and patient donors.  IJB.   200. Khalid MAU, Kim YS, Ali M, Lee BG, Cho YJ, Choi KH. A
               2024;10(3):1403.                                   lung cancer-on-chip platform with integrated biosensors for
               doi: 10.36922/ijb.1403                             physiological monitoring and toxicity assessment. Biochem
                                                                  Engi J. 2020;155:107469.
            190. Kang D, Lee H, Jung S. Use of a 3D inkjet‐printed model to      doi: 10.1016/j.bej.2019.107469
               access dust particle toxicology in the human alveolar barrier.   201. Chandiramohan A, Dabaghi M, Aguiar JA, et al. Development
               Biotechnol Bioeng. 2022;119(12):3668-3677.         and validation of an open-source, disposable, 3D-printed in
               doi: 10.1002/bit.28220
                                                                  vitro environmental exposure system for transwell culture
            191. Yong U, Kim D, Kim H,  et al. Biohybrid 3D printing   inserts. ERJ Open Res. 2021;7(1):00705-02020.
               of a tissue-sensor platform for wireless, real-time, and      doi: 10.1183/23120541.00705-2020
               continuous monitoring of drug-induced cardiotoxicity. Adv   202. Gerbolés AG, Galetti M, Rossi S, et al. Three-dimensional
               Mater. 2023;35(11):2208983.                        bioprinting of organoid-based scaffolds (OBST) for
               doi: 10.1002/adma.202208983                        long-term nanoparticle  toxicology  investigation.  IJMS.
            192. Madden LR, Nguyen TV, Garcia-Mojica S, et al. Bioprinted   2023;24(7):6595.
               3D primary human intestinal tissues model aspects of      doi: 10.3390/ijms24076595
               native physiology and ADME/Tox Functions.  iScience.   203. Zhang YS, Arneri A, Bersini S,  et al. Bioprinting 3D
               2018;2:156-167.                                    microfibrous  scaffolds  for  engineering endothelialized
               doi: 10.1016/j.isci.2018.03.015                    myocardium   and   heart-on-a-chip.  Biomaterials.
            193. Wei Z, Liu X, Ooka M,  et al. Two-dimensional cellular   2016;110:45-59.
               and three-dimensional bio-printed skin models to screen      doi: 10.1016/j.biomaterials.2016.09.003
               topical-use compounds for irritation potential. Front Bioeng   204. Miller KL, Sit I, Xiang Y,  et al. Evaluation of CuO
               Biotechnol. 2020;8:109.                            nanoparticle toxicity on 3D bioprinted human iPSC-derived
               doi: 10.3389/fbioe.2020.00109                      cardiac tissues. Bioprinting. 2023;32:e00284.
            194. Nguyen DG, Funk J, Robbins JB,  et  al. Bioprinted 3D      doi: 10.1016/j.bprint.2023.e00284
               primary liver tissues allow assessment of organ-level   205. Jiang D, Sheng K, Jiang H, Wang L. A biomimetic “intestinal
               response to clinical drug induced toxicity in vitro. PLoS One.   microvillus” cell sensor based on 3D bioprinting for the
               2016;11(7):e0158674.                               detection of wheat allergen gliadin.  Bioelectrochemistry.
               doi: 10.1371/journal.pone.0158674                  2021;142:107919.
                                                                  doi: 10.1016/j.bioelechem.2021.107919
            195. He J, Wang J, Pang Y, et al. Bioprinting of a hepatic tissue
               model using humaninduced pluripotent stem cell-derived   206. Tofani LB, Avelino TM, De Azevedo RJ, et al. Biofabricated
               hepatocytes for drug-induced hepatotoxicity evaluation. IJB.   3D intestinal models as an alternative to animal based
               2022;8(3):581.                                     approaches for drug toxicity assays. Tissue Eng Regen Med.
               doi: 10.18063/ijb.v8i3.581                         2025;22(2):181-194.


            Volume 11 Issue 4 (2025)                       131                            doi: 10.36922/IJB025210209
   134   135   136   137   138   139   140   141   142   143   144