Page 139 - v11i4
P. 139
International Journal of Bioprinting 3D bioprinting for translational toxicology
185. Johnston LJ, Gonzalez-Rojano N, Wilkinson KJ, Xing B. 196. Janani G, Priya S, Dey S, Mandal BB. Mimicking native
Key challenges for evaluation of the safety of engineered liver lobule microarchitecture in vitro with parenchymal
nanomaterials. NanoImpact. 2020;18:100219. and non-parenchymal cells using 3D bioprinting for drug
doi: 10.1016/j.impact.2020.100219 toxicity and drug screening applications. ACS Appl Mater
Interfaces. 2022;14(8):10167-10186.
186. Clark KA, White RH, Silbergeld EK. Predictive models for doi: 10.1021/acsami.2c00312
nanotoxicology: current challenges and future opportunities.
Regul Toxicol Pharmacol. 2011;59(3):361-363. 197. Ali ASM, Berg J, Roehrs V, et al. Xeno-free 3D bioprinted
doi: 10.1016/j.yrtph.2011.02.002 liver model for hepatotoxicity assessment. Int J Mol Sci.
2024;25(3):1811.
187. Yi HG, Kim H, Kwon J, Choi YJ, Jang J, Cho DW. doi: 10.3390/ijms25031811
Application of 3D bioprinting in the prevention and the
therapy for human diseases. Sig Transduct Target Ther. 2021; 198. Khanal D, Zhang F, Song Y, et al. Biological impact of
6(1):1-17. nanodiamond particles – label free, high-resolution
doi: 10.1038/s41392-021-00566-8 methods for nanotoxicity assessment. Nanotoxicology.
2019;13(9):1210-1226.
188. Blaeser A, Duarte Campos DF, Puster U, Richtering W, doi: 10.1080/17435390.2019.1650970
Stevens MM, Fischer H. Controlling shear stress in 3D
bioprinting is a key factor to balance printing resolution and 199. Singh NK, Kim JY, Jang J, Kim YK, Cho DW. 3D cell printing
stem cell integrity. Adv Healthc Mater. 2016;5(3):326-333. of advanced vascularized proximal tubule-on-a-chip for
doi: 10.1002/adhm.201500677 drug induced nephrotoxicity advancement. ACS Appl Bio
Mater. 2023;6(9):3750-3758.
189. Liang S, Luo Y, Su Y, et al. Distinct toxicity of microplastics/ doi: 10.1021/acsabm.3c00421
TBBPA co-exposure to bioprinted liver organoids
derived from hiPSCs of healthy and patient donors. IJB. 200. Khalid MAU, Kim YS, Ali M, Lee BG, Cho YJ, Choi KH. A
2024;10(3):1403. lung cancer-on-chip platform with integrated biosensors for
doi: 10.36922/ijb.1403 physiological monitoring and toxicity assessment. Biochem
Engi J. 2020;155:107469.
190. Kang D, Lee H, Jung S. Use of a 3D inkjet‐printed model to doi: 10.1016/j.bej.2019.107469
access dust particle toxicology in the human alveolar barrier. 201. Chandiramohan A, Dabaghi M, Aguiar JA, et al. Development
Biotechnol Bioeng. 2022;119(12):3668-3677. and validation of an open-source, disposable, 3D-printed in
doi: 10.1002/bit.28220
vitro environmental exposure system for transwell culture
191. Yong U, Kim D, Kim H, et al. Biohybrid 3D printing inserts. ERJ Open Res. 2021;7(1):00705-02020.
of a tissue-sensor platform for wireless, real-time, and doi: 10.1183/23120541.00705-2020
continuous monitoring of drug-induced cardiotoxicity. Adv 202. Gerbolés AG, Galetti M, Rossi S, et al. Three-dimensional
Mater. 2023;35(11):2208983. bioprinting of organoid-based scaffolds (OBST) for
doi: 10.1002/adma.202208983 long-term nanoparticle toxicology investigation. IJMS.
192. Madden LR, Nguyen TV, Garcia-Mojica S, et al. Bioprinted 2023;24(7):6595.
3D primary human intestinal tissues model aspects of doi: 10.3390/ijms24076595
native physiology and ADME/Tox Functions. iScience. 203. Zhang YS, Arneri A, Bersini S, et al. Bioprinting 3D
2018;2:156-167. microfibrous scaffolds for engineering endothelialized
doi: 10.1016/j.isci.2018.03.015 myocardium and heart-on-a-chip. Biomaterials.
193. Wei Z, Liu X, Ooka M, et al. Two-dimensional cellular 2016;110:45-59.
and three-dimensional bio-printed skin models to screen doi: 10.1016/j.biomaterials.2016.09.003
topical-use compounds for irritation potential. Front Bioeng 204. Miller KL, Sit I, Xiang Y, et al. Evaluation of CuO
Biotechnol. 2020;8:109. nanoparticle toxicity on 3D bioprinted human iPSC-derived
doi: 10.3389/fbioe.2020.00109 cardiac tissues. Bioprinting. 2023;32:e00284.
194. Nguyen DG, Funk J, Robbins JB, et al. Bioprinted 3D doi: 10.1016/j.bprint.2023.e00284
primary liver tissues allow assessment of organ-level 205. Jiang D, Sheng K, Jiang H, Wang L. A biomimetic “intestinal
response to clinical drug induced toxicity in vitro. PLoS One. microvillus” cell sensor based on 3D bioprinting for the
2016;11(7):e0158674. detection of wheat allergen gliadin. Bioelectrochemistry.
doi: 10.1371/journal.pone.0158674 2021;142:107919.
doi: 10.1016/j.bioelechem.2021.107919
195. He J, Wang J, Pang Y, et al. Bioprinting of a hepatic tissue
model using humaninduced pluripotent stem cell-derived 206. Tofani LB, Avelino TM, De Azevedo RJ, et al. Biofabricated
hepatocytes for drug-induced hepatotoxicity evaluation. IJB. 3D intestinal models as an alternative to animal based
2022;8(3):581. approaches for drug toxicity assays. Tissue Eng Regen Med.
doi: 10.18063/ijb.v8i3.581 2025;22(2):181-194.
Volume 11 Issue 4 (2025) 131 doi: 10.36922/IJB025210209