Page 138 - v11i4
P. 138
International Journal of Bioprinting 3D bioprinting for translational toxicology
162. Cao X, Ashfaq R, Cheng F, et al. A tumor‐on‐a‐chip system doi: 10.1016/j.aca.2019.10.049
with bioprinted blood and lymphatic vessel pair. Adv Funct 174. López Marzo AM, Mayorga-Martinez CC, Pumera M.
Mater. 2019;29(31):1807173. 3D-printed graphene direct electron transfer enzyme
doi: 10.1002/adfm.201807173
biosensors. Biosens Bioelectron. 2020;151:111980.
163. Xie M, Gao Q, Fu J, Chen Z, He Y. Bioprinting of novel doi: 10.1016/j.bios.2019.111980
3D tumor array chip for drug screening. Bio-des Manuf.
2020;3(3):175-188. 175. Lee J, Maji S, Lee H. Fabrication and integration of a low‐
doi: 10.1007/s42242-020-00078-4 cost 3D printing‐based glucose biosensor for bioprinted
liver‐on‐a‐chip. Biotechnol J. 2023;18(12):e2300154.
164. Johnson BN, Lancaster KZ, Hogue IB, et al. 3D printed doi: 10.1002/biot.202300154
nervous system on a chip. Lab Chip. 2016;16(8):1393-1400.
doi: 10.1039/C5LC01270H 176. Guo X, Wang Z, Hou J, et al. A novel magnetoelastic
biosensor consisting of carbon quantum dots/nitrocellulose
165. Skardal A, Murphy SV, Devarasetty M, et al. Multi-tissue membranes and NiFe O / polylactic acid based on 3D
2
4
interactions in an integrated three-tissue organ-on-a-chip printing for α2-macroglobulin detection. Chin J Anal Chem.
platform. Sci Rep. 2017;7(1):8837. 2024;52(9):100420.
doi: 10.1038/s41598-017-08879-x doi: 10.1016/j.cjac.2024.100420
166. Elezoglou E, Chliara M, Chatzipetrou M, et al. Laser 177. Sun D, Gao W, Hu H, Zhou S. Why 90% of clinical drug
bioprinting of cells and tumor organoids for organ-on-chip development fails and how to improve it? Acta Pharm Sin B.
applications. In: Frontiers in Ultrafast Optics: Biomedical, 2022;12(7):3049-3062.
Scientific, and Industrial Applications XXIII. Vol PC12411. doi: 10.1016/j.apsb.2022.02.002
SPIE; 2023:PC1241107.
doi: 10.1117/12.2648068 178. Li X, Zhang R, Zhao B, Lossin C, Cao Z. Cardiotoxicity
screening: a review of rapid-throughput in vitro approaches.
167. Bowser DA, Moore MJ. Biofabrication of neural Arch Toxicol. 2016;90(8):1803-1816.
microphysiological systems using magnetic spheroid doi: 10.1007/s00204-015-1651-1
bioprinting. Biofabrication. 2019;12(1):015002.
doi: 10.1088/1758-5090/ab41b4 179. Muir DCG, Getzinger GJ, McBride M, Ferguson PL. How
many chemicals in commerce have been analyzed in
168. Han T, Kundu S, Nag A, Xu Y. 3D printed sensors
for biomedical applications: a review. Sensors. 2019; environmental media? A 50 year bibliometric analysis.
19(7):1706. Environ Sci Technol. 2023;57(25):9119-9129.
doi: 10.3390/s19071706 doi: 10.1021/acs.est.2c09353
180. Godoy P, Hewitt NJ, Albrecht U, et al. Recent advances in
169. Cagnani GR, Ibáñez-Redín G, Tirich B, Gonçalves D,
Balogh DT, Oliveira ON. Fully-printed electrochemical 2D and 3D in vitro systems using primary hepatocytes,
sensors made with flexible screen-printed electrodes alternative hepatocyte sources and non-parenchymal
modified by roll-to-roll slot-die coating. Biosens Bioelectron. liver cells and their use in investigating mechanisms of
2020;165:112428. hepatotoxicity, cell signaling and ADME. Arch Toxicol.
doi: 10.1016/j.bios.2020.112428 2013;87(8):1315-1530.
doi: 10.1007/s00204-013-1078-5
170. Wang R, Zhu X, Sun L, et al. Cost-effective fabrication of
transparent strain sensors via micro-scale 3D printing and 181. Scharff RL. Economic burden from health losses due
imprinting. Nanomaterials. 2021;12(1):120. to foodborne illness in the united states. J Food Prot.
doi: 10.3390/nano12010120 2012;75(1):123-131.
doi: 10.4315/0362-028X.JFP-11-058
171. Wu D, Peng Q, Wu S, et al. A simple graphene NH3
gas sensor via laser direct writing. Sensors. 2018; 182. Hussain MA, Dawson CO. Economic impact of food safety
18(12):4405. outbreaks on food businesses. Foods. 2013;2(4):585-589.
doi: 10.3390/s18124405 doi: 10.3390/foods2040585
172. Hecht L, Rager K, Davidonis M, Weber P, Gauglitz G, Dietzel 183. Van Norman GA. Limitations of animal studies for
A. Blister-actuated LIFT printing for multiparametric predicting toxicity in clinical trials: is it time to rethink
functionalization of paper-like biosensors. Micromachines. our current approach? JACC: Basic Transl Sci. 2019;4(7):
2019;10(4):221. 845-854.
doi: 10.3390/mi10040221 doi: 10.1016/j.jacbts.2019.10.008
173. Cao L, Han GC, Xiao H, Chen Z, Fang C. A novel 3D 184. Monteiro‐Riviere NA. Perspectives of nanotoxicology:
paper-based microfluidic electrochemical glucose biosensor introduction. Wiley Interdiscip Rev Nanomed Nanobiotechnol.
based on rGO-TEPA/PB sensitive film. Anal Chim Acta. 2022;14(6):e1843.
2020;1096:34-43. doi: 10.1002/wnan.1843
Volume 11 Issue 4 (2025) 130 doi: 10.36922/IJB025210209