Page 138 - v11i4
P. 138

International Journal of Bioprinting                                3D bioprinting for translational toxicology




            162. Cao X, Ashfaq R, Cheng F, et al. A tumor‐on‐a‐chip system      doi: 10.1016/j.aca.2019.10.049
               with bioprinted blood and lymphatic vessel pair. Adv Funct   174. López Marzo AM, Mayorga-Martinez CC, Pumera M.
               Mater. 2019;29(31):1807173.                        3D-printed  graphene  direct  electron  transfer  enzyme
               doi: 10.1002/adfm.201807173
                                                                  biosensors. Biosens Bioelectron. 2020;151:111980.
            163. Xie M, Gao Q, Fu J, Chen Z, He Y. Bioprinting of novel      doi: 10.1016/j.bios.2019.111980
               3D tumor array chip for drug screening.  Bio-des Manuf.
               2020;3(3):175-188.                              175. Lee J, Maji S, Lee H. Fabrication and integration of a low‐
               doi: 10.1007/s42242-020-00078-4                    cost 3D printing‐based glucose biosensor for bioprinted
                                                                  liver‐on‐a‐chip. Biotechnol J. 2023;18(12):e2300154.
            164. Johnson BN, Lancaster KZ, Hogue IB,  et al. 3D printed      doi: 10.1002/biot.202300154
               nervous system on a chip. Lab Chip. 2016;16(8):1393-1400.
               doi: 10.1039/C5LC01270H                         176. Guo X, Wang Z, Hou J,  et  al. A novel magnetoelastic
                                                                  biosensor consisting of carbon quantum dots/nitrocellulose
            165. Skardal A, Murphy SV, Devarasetty M,  et al. Multi-tissue   membranes and NiFe O / polylactic acid based on 3D
                                                                                   2
                                                                                     4
               interactions in an integrated three-tissue organ-on-a-chip   printing for α2-macroglobulin detection. Chin J Anal Chem.
               platform. Sci Rep. 2017;7(1):8837.                 2024;52(9):100420.
               doi: 10.1038/s41598-017-08879-x                    doi: 10.1016/j.cjac.2024.100420
            166. Elezoglou E, Chliara M, Chatzipetrou M,  et  al.  Laser   177. Sun D, Gao W, Hu H, Zhou S. Why 90% of clinical drug
               bioprinting of cells and tumor organoids for organ-on-chip   development fails and how to improve it? Acta Pharm Sin B.
               applications. In:  Frontiers  in  Ultrafast  Optics:  Biomedical,   2022;12(7):3049-3062.
               Scientific, and Industrial Applications XXIII. Vol PC12411.      doi: 10.1016/j.apsb.2022.02.002
               SPIE; 2023:PC1241107.
               doi: 10.1117/12.2648068                         178. Li  X,  Zhang  R,  Zhao  B,  Lossin  C, Cao  Z.  Cardiotoxicity
                                                                  screening: a review of rapid-throughput in vitro approaches.
            167. Bowser DA, Moore MJ. Biofabrication of neural    Arch Toxicol. 2016;90(8):1803-1816.
               microphysiological systems using magnetic spheroid      doi: 10.1007/s00204-015-1651-1
               bioprinting. Biofabrication. 2019;12(1):015002.
               doi: 10.1088/1758-5090/ab41b4                   179. Muir DCG, Getzinger GJ, McBride M, Ferguson PL. How
                                                                  many chemicals in commerce have been analyzed in
            168. Han T, Kundu S, Nag A, Xu Y. 3D printed sensors
               for biomedical applications: a review.  Sensors. 2019;   environmental media? A 50 year bibliometric analysis.
               19(7):1706.                                        Environ Sci Technol. 2023;57(25):9119-9129.
               doi: 10.3390/s19071706                             doi: 10.1021/acs.est.2c09353
                                                               180. Godoy P, Hewitt NJ, Albrecht U, et al. Recent advances in
            169. Cagnani GR, Ibáñez-Redín G, Tirich B, Gonçalves D,
               Balogh DT, Oliveira ON. Fully-printed electrochemical   2D and 3D in vitro systems using primary hepatocytes,
               sensors made with flexible screen-printed electrodes   alternative hepatocyte sources and non-parenchymal
               modified by roll-to-roll slot-die coating. Biosens Bioelectron.   liver cells and their use in investigating mechanisms of
               2020;165:112428.                                   hepatotoxicity, cell signaling and ADME.  Arch Toxicol.
               doi: 10.1016/j.bios.2020.112428                    2013;87(8):1315-1530.
                                                                  doi: 10.1007/s00204-013-1078-5
            170. Wang R, Zhu X, Sun L, et al. Cost-effective fabrication of
               transparent strain sensors via micro-scale 3D printing and   181. Scharff RL. Economic burden from health losses due
               imprinting. Nanomaterials. 2021;12(1):120.         to foodborne illness in the united states.  J Food Prot.
               doi: 10.3390/nano12010120                          2012;75(1):123-131.
                                                                  doi: 10.4315/0362-028X.JFP-11-058
            171. Wu D, Peng Q, Wu S,  et al. A simple graphene NH3
               gas sensor via laser direct writing.  Sensors. 2018;   182. Hussain MA, Dawson CO. Economic impact of food safety
               18(12):4405.                                       outbreaks on food businesses. Foods. 2013;2(4):585-589.
               doi: 10.3390/s18124405                             doi: 10.3390/foods2040585
            172. Hecht L, Rager K, Davidonis M, Weber P, Gauglitz G, Dietzel   183. Van Norman GA. Limitations of animal studies for
               A. Blister-actuated LIFT printing for multiparametric   predicting toxicity in clinical trials: is it time to rethink
               functionalization of paper-like biosensors. Micromachines.   our current approach?  JACC: Basic Transl Sci. 2019;4(7):
               2019;10(4):221.                                    845-854.
               doi: 10.3390/mi10040221                            doi: 10.1016/j.jacbts.2019.10.008
            173. Cao L, Han GC, Xiao H, Chen Z, Fang C. A novel 3D   184. Monteiro‐Riviere  NA. Perspectives  of  nanotoxicology:
               paper-based microfluidic electrochemical glucose biosensor   introduction. Wiley Interdiscip Rev Nanomed Nanobiotechnol.
               based on rGO-TEPA/PB sensitive film.  Anal Chim Acta.   2022;14(6):e1843.
               2020;1096:34-43.                                   doi: 10.1002/wnan.1843



            Volume 11 Issue 4 (2025)                       130                            doi: 10.36922/IJB025210209
   133   134   135   136   137   138   139   140   141   142   143