Page 137 - v11i4
P. 137

International Journal of Bioprinting                                3D bioprinting for translational toxicology




               hallmarks of type 2 diabetes in vitro.  Biomaterials. 2021;   150. Wu J, Gu M. Microfluidic sensing: state of the art
               272:120776.                                        fabrication and detection techniques. J Biomed Opt. 2011;
               doi: 10.1016/j.biomaterials.2021.120776            16(8):080901.
                                                                  doi: 10.1117/1.3607430
            140. Vázquez‐Aristizabal P, Henriksen‐Lacey M, García‐
               Astrain C,  et al. Biofabrication and monitoring of a 3D   151. Wu Q, Liu J, Wang X,  et al. Organ-on-a-chip: Recent
               printed skin model for melanoma.  Adv Healthc Mater.   breakthroughs and future prospects.  Biomed Eng Online.
               2024;13(27):e2401136.                              2020;19(1):9.
               doi: 10.1002/adhm.202401136                        doi: 10.1186/s12938-020-0752-0
            141. Tijore  A,  Irvine  SA,  Sarig  U,  Mhaisalkar  P,  Baisane  V,   152. Mehrotra S, de Melo BAG, Hirano M, et al. Nonmulberry
               Venkatraman S. Contact guidance for cardiac tissue   silk based ink for fabricating mechanically robust
               engineering using 3D bioprinted gelatin patterned hydrogel.   cardiac patches and endothelialized myocardium-
               Biofabrication. 2018;10(2):025003.                 on-a-chip  application.  Adv Funct Mater.  2020;30(12):
               doi: 10.1088/1758-5090/aaa15d                      1907436.
                                                                  doi: 10.1002/adfm.201907436
            142. Melhem MR, Park J, Knapp L, et al. 3D printed stem-cell-
               laden, microchanneled hydrogel patch for the enhanced   153. Bhise NS, Manoharan V, Massa S, et al. A liver-on-a-chip
               release of cell-secreting factors and treatment of myocardial   platform with bioprinted hepatic spheroids. Biofabrication.
               infarctions. ACS Biomater Sci Eng. 2017;3(9):1980-1987.  2016;8(1):014101.
               doi: 10.1021/acsbiomaterials.6b00176               doi: 10.1088/1758-5090/8/1/014101
            143. Ong CS, Fukunishi T, Zhang H, et al. Biomaterial-free three-  154. Park JY, Ryu H, Lee B, et al. Development of a functional
               dimensional bioprinting of cardiac tissue using human   airway-on-a-chip by 3D cell printing.  Biofabrication.
               induced pluripotent stem cell derived cardiomyocytes. Sci   2018;11(1):015002.
               Rep. 2017;7(1):4566.                               doi: 10.1088/1758-5090/aae545
               doi: 10.1038/s41598-017-05018-4                 155. Chang R, Emami K, Wu H, Sun W. Biofabrication of
            144. Arai K, Murata D, Takao S, Verissiomo AR, Nakayama   a  three-dimensional  liver  micro-organ  as  an  in  vitro
               K.  Cryopreservation  method  for  spheroids  and  drug metabolism model.  Biofabrication. 2010;2(4):
               fabrication of scaffold-free tubular constructs.  PLoS One.   045004.
               2020;15(4):e0230428.                               doi: 10.1088/1758-5082/2/4/045004
               doi: 10.1371/journal.pone.0230428               156. Chang R, Nam J, Sun W. Direct cell writing of 3D microorgan
            145. Arai K, Kitsuka T, Nakayama K. Scaffold-based and scaffold-  for in vitro pharmacokinetic model.  Tissue Eng Part C
               free cardiac constructs for drug testing.  Biofabrication.   Methods. 2008;14(2):157-166.
               2021;13(4):1-14.                                   doi: 10.1089/ten.tec.2007.0392
               doi: 10.1088/1758-5090/ac1257                   157. Lee H, Cho DW. One-step fabrication of an organ-on-
            146. Mironov V, Boland T, Trusk T, Forgacs G, Markwald   a-chip  with  spatial  heterogeneity  using  a  3D  bioprinting
               RR. Organ printing: computer-aided jet-based 3D tissue   technology. Lab Chip. 2016;16(14):2618-2625.
               engineering. Trends Biotechnol. 2003;21(4):157-161.     doi: 10.1039/C6LC00450D
               doi: 10.1016/S0167-7799(03)00033-7              158. Lin NYC, Homan KA, Robinson SS, et al. Renal reabsorption
            147. Utama RH, Atapattu L, O’Mahony AP, et al. A 3D bioprinter   in 3D vascularized proximal tubule models.  PNAS.
               specifically designed for the high-throughput production   2019;116(12):5399-5404.
               of  matrix-embedded  multicellular  spheroids.  iScience.      doi: 10.1073/pnas.1815208116
               2020;23(10):101621.                             159. Fritschen A, Lindner N, Scholpp S,  et al. High‐scale
               doi: 10.1016/j.isci.2020.101621                    3D‐bioprinting platform for the automated production
            148. Matsusaki M, Sakaue K, Kadowaki K, Akashi M. Three-  of vascularized organs‐on‐a‐chip.  Adv Healthc Mater.
               dimensional  human  tissue  chips  fabricated  by  rapid   2024;13(17):2304028.
               and  automatic  inkjet  cell  printing.  Adv  Healthc  Mater.      doi: 10.1002/adhm.202304028
               2013;2(4):534-539.                              160. Zhang YS, Davoudi F, Walch P, et al. Bioprinted thrombosis-
               doi: 10.1002/adhm.201200299                        on-a-chip. Lab Chip. 2016;16(21):4097-4105.
                                                                  doi: 10.1039/C6LC00380J
            149. Gale, B.K., Jafek, A.R., Lambert, C.J.,  et al. A review of
               current methods in microfluidic device fabrication and   161. Abudupataer M, Chen N, Yan S,  et al. Bioprinting a 3D
               future commercialization prospects.  Inventions. 2018;   vascular construct for engineering a vessel-on-a-chip.
               3(3):60.                                           Biomed Microdevices. 2019;22(1):10.
               doi: 10.3390/inventions3030060                     doi: 10.1007/s10544-019-0460-3



            Volume 11 Issue 4 (2025)                       129                            doi: 10.36922/IJB025210209
   132   133   134   135   136   137   138   139   140   141   142