Page 135 - v11i4
P. 135

International Journal of Bioprinting                                3D bioprinting for translational toxicology




            92.  Han W, Kong L, Xu M. Advances in selective laser sintering      doi: 10.1080/17425247.2016.1182485
               of polymers. Int J Extrem Manuf. 2022;4(4):042002.  105. Veronese FM, Pasut G. PEGylation, successful approach
               doi: 10.1088/2631-7990/ac9096
                                                                  to drug delivery.  Drug Discov Today. 2005;10(21):
            93.  Duan B, Wang M, Zhou WY, Cheung WL, Li ZY, Lu WW.   1451-1458.
               Three-dimensional nanocomposite scaffolds fabricated via      doi: 10.1016/S1359-6446(05)03575-0
               selective laser sintering for bone tissue  engineering.  Acta   106. Yamaoka T, Tabata Y, Ikada Y. Distribution and tissue uptake
               Biomater. 2010;6(12):4495-4505.                    of poly(ethylene glycol) with different molecular weights
               doi: 10.1016/j.actbio.2010.06.024
                                                                  after intravenous administration to mice.  J Pharm Sci.
            94.  Jang J, Yi HG, Cho DW. 3D printed tissue models: present   1994;83(4):601-606.
               and future. ACS Biomater Sci Eng. 2016;2(10):1722-1731.     doi: 10.1002/jps.2600830432
               doi: 10.1021/acsbiomaterials.6b00129
                                                               107. Schmedlen RH, Masters KS, West JL. Photocrosslinkable
            95.  Jabbari E. Hydrogels for cell delivery. Gels. 2018;4(3):58.  polyvinyl alcohol hydrogels that can be modified with cell
               doi: 10.3390/gels4030058                           adhesion peptides for use in tissue engineering. Biomaterials.
                                                                  2002;23(22):4325-4332.
            96.  Liu J, Wang Q, Le Y.,  et al. 3D-bioprinting for precision
               microtissue engineering: advances, applications, and      doi: 10.1016/S0142-9612(02)00177-1
               prospects. Adv Healthc Mater. 2025;14(10):e2403781.  108. Cheng Y, Deng S, Chen P, Ruan R. Polylactic acid (PLA)
               doi: 10.1002/adhm.202403781                        synthesis and modifications: a review. Front Chem China.
                                                                  2009;4(3):259-264.
            97.  Zhang T, Yan KC, Ouyang L, Sun W. Mechanical
               characterization of bioprinted in vitro soft tissue models.      doi: 10.1007/s11458-009-0092-x
               Biofabrication. 2013;5(4):045010.               109. Bee SL, Hamid ZAA, Mariatti M,  et al. Approaches to
               doi: 10.1088/1758-5082/5/4/045010                  improve therapeutic efficacy of biodegradable PLA/PLGA
                                                                  microspheres: a review. Polym Rev. 2018;58(3):495-536.
            98.  Gudapati H, Yan J, Huang Y, Chrisey DB. Alginate gelation-
               induced cell death during laser-assisted cell printing.      doi: 10.1080/15583724.2018.1437547
               Biofabrication. 2014;6(3):035022.               110. Labet M, Thielemans W. Synthesis of polycaprolactone: a
               doi: 10.1088/1758-5082/6/3/035022                  review. Chem Soc Rev. 2009;38(12):3484-3504.
                                                                  doi: 10.1039/B820162P
            99.  Li J, Wu C, Chu PK, Gelinsky M. 3D printing of hydrogels:
               rational design strategies and emerging biomedical   111. Kim J, Park SA, Kim J, Lee J. Fabrication and characterization
               applications. Mat Sci Eng R Rep. 2020;140:100543.  of bioresorbable drug-coated porous scaffolds for vascular
               doi: 10.1016/j.mser.2020.100543                    tissue engineering. Materials. 2019;12(9):1438.
                                                                  doi: 10.3390/ma12091438
            100. Widhe  M,  Johansson  U,  Hillerdahl  CO,  Hedhammar
               M. Recombinant spider silk with cell binding motifs for   112. Zhang W, Weng T, Li Q,  et al. Applications of
               specific adherence of cells.  Biomaterials. 2013;34(33):   poly(caprolactone)-based nanofibre electrospun scaffolds
               8223-8234.                                         in tissue engineering and regenerative medicine. Curr Stem
               doi: 10.1016/j.biomaterials.2013.07.058            Cell Res Ther. 2021;16(4):414-442.
                                                                  doi: 10.2174/1574888X15666201014145703
            101. Aigner TB, DeSimone E, Scheibel T. Biomedical applications
               of recombinant silk-based materials.  Adv Mater.   113. Kolesky DB, Truby RL, Gladman AS, Busbee TA, Homan
               2018;30(19):e1704636.                              KA, Lewis JA. 3D bioprinting of vascularized, heterogeneous
               doi: 10.1002/adma.201704636                        cell-laden tissue constructs.  Adv Mater. 2014;26(19):
                                                                  3124-3130.
            102. Brown M, Li J, Moraes C, Tabrizian M, Li-Jessen NYK.
               Decellularized extracellular matrix: new promising and      doi: 10.1002/adma.201305506
               challenging biomaterials for regenerative medicine.   114. Müller M, Becher J, Schnabelrauch M, Zenobi-Wong M.
               Biomaterials. 2022;289:121786.                     Nanostructured  pluronic  hydrogels  as  bioinks  for  3D
               doi: 10.1016/j.biomaterials.2022.121786            bioprinting. Biofabrication. 2015;7(3):035006.
                                                                  doi: 10.1088/1758-5090/7/3/035006
            103. Kim BS, Das S, Jang J, Cho DW. Decellularized
               extracellular matrix-based bioinks for engineering tissue-   115. Ng WL, Yeong WY, Naing MW. Polyvinylpyrrolidone-
               and organ-specific microenvironments.  Chem Rev.   based bio-ink improves cell viability and homogeneity
               2020;120(19):10608-10661.                          during drop-on-demand printing.  Materials. 2017;
               doi: 10.1021/acs.chemrev.9b00808                   10(2):190.
                                                                  doi: 10.3390/ma10020190
            104. D’souza AA, Shegokar R. Polyethylene glycol (PEG): a
               versatile  polymer  for  pharmaceutical  applications.  Expert   116. Xiang  Y, Miller  K,  Guan J, Kiratitanaporn W,  Tang  M,
               Opin Drug Deliv. 2016;13(9):1257-1275.             Chen S. 3D bioprinting of complex tissues in vitro: State-


            Volume 11 Issue 4 (2025)                       127                            doi: 10.36922/IJB025210209
   130   131   132   133   134   135   136   137   138   139   140