Page 135 - v11i4
P. 135
International Journal of Bioprinting 3D bioprinting for translational toxicology
92. Han W, Kong L, Xu M. Advances in selective laser sintering doi: 10.1080/17425247.2016.1182485
of polymers. Int J Extrem Manuf. 2022;4(4):042002. 105. Veronese FM, Pasut G. PEGylation, successful approach
doi: 10.1088/2631-7990/ac9096
to drug delivery. Drug Discov Today. 2005;10(21):
93. Duan B, Wang M, Zhou WY, Cheung WL, Li ZY, Lu WW. 1451-1458.
Three-dimensional nanocomposite scaffolds fabricated via doi: 10.1016/S1359-6446(05)03575-0
selective laser sintering for bone tissue engineering. Acta 106. Yamaoka T, Tabata Y, Ikada Y. Distribution and tissue uptake
Biomater. 2010;6(12):4495-4505. of poly(ethylene glycol) with different molecular weights
doi: 10.1016/j.actbio.2010.06.024
after intravenous administration to mice. J Pharm Sci.
94. Jang J, Yi HG, Cho DW. 3D printed tissue models: present 1994;83(4):601-606.
and future. ACS Biomater Sci Eng. 2016;2(10):1722-1731. doi: 10.1002/jps.2600830432
doi: 10.1021/acsbiomaterials.6b00129
107. Schmedlen RH, Masters KS, West JL. Photocrosslinkable
95. Jabbari E. Hydrogels for cell delivery. Gels. 2018;4(3):58. polyvinyl alcohol hydrogels that can be modified with cell
doi: 10.3390/gels4030058 adhesion peptides for use in tissue engineering. Biomaterials.
2002;23(22):4325-4332.
96. Liu J, Wang Q, Le Y., et al. 3D-bioprinting for precision
microtissue engineering: advances, applications, and doi: 10.1016/S0142-9612(02)00177-1
prospects. Adv Healthc Mater. 2025;14(10):e2403781. 108. Cheng Y, Deng S, Chen P, Ruan R. Polylactic acid (PLA)
doi: 10.1002/adhm.202403781 synthesis and modifications: a review. Front Chem China.
2009;4(3):259-264.
97. Zhang T, Yan KC, Ouyang L, Sun W. Mechanical
characterization of bioprinted in vitro soft tissue models. doi: 10.1007/s11458-009-0092-x
Biofabrication. 2013;5(4):045010. 109. Bee SL, Hamid ZAA, Mariatti M, et al. Approaches to
doi: 10.1088/1758-5082/5/4/045010 improve therapeutic efficacy of biodegradable PLA/PLGA
microspheres: a review. Polym Rev. 2018;58(3):495-536.
98. Gudapati H, Yan J, Huang Y, Chrisey DB. Alginate gelation-
induced cell death during laser-assisted cell printing. doi: 10.1080/15583724.2018.1437547
Biofabrication. 2014;6(3):035022. 110. Labet M, Thielemans W. Synthesis of polycaprolactone: a
doi: 10.1088/1758-5082/6/3/035022 review. Chem Soc Rev. 2009;38(12):3484-3504.
doi: 10.1039/B820162P
99. Li J, Wu C, Chu PK, Gelinsky M. 3D printing of hydrogels:
rational design strategies and emerging biomedical 111. Kim J, Park SA, Kim J, Lee J. Fabrication and characterization
applications. Mat Sci Eng R Rep. 2020;140:100543. of bioresorbable drug-coated porous scaffolds for vascular
doi: 10.1016/j.mser.2020.100543 tissue engineering. Materials. 2019;12(9):1438.
doi: 10.3390/ma12091438
100. Widhe M, Johansson U, Hillerdahl CO, Hedhammar
M. Recombinant spider silk with cell binding motifs for 112. Zhang W, Weng T, Li Q, et al. Applications of
specific adherence of cells. Biomaterials. 2013;34(33): poly(caprolactone)-based nanofibre electrospun scaffolds
8223-8234. in tissue engineering and regenerative medicine. Curr Stem
doi: 10.1016/j.biomaterials.2013.07.058 Cell Res Ther. 2021;16(4):414-442.
doi: 10.2174/1574888X15666201014145703
101. Aigner TB, DeSimone E, Scheibel T. Biomedical applications
of recombinant silk-based materials. Adv Mater. 113. Kolesky DB, Truby RL, Gladman AS, Busbee TA, Homan
2018;30(19):e1704636. KA, Lewis JA. 3D bioprinting of vascularized, heterogeneous
doi: 10.1002/adma.201704636 cell-laden tissue constructs. Adv Mater. 2014;26(19):
3124-3130.
102. Brown M, Li J, Moraes C, Tabrizian M, Li-Jessen NYK.
Decellularized extracellular matrix: new promising and doi: 10.1002/adma.201305506
challenging biomaterials for regenerative medicine. 114. Müller M, Becher J, Schnabelrauch M, Zenobi-Wong M.
Biomaterials. 2022;289:121786. Nanostructured pluronic hydrogels as bioinks for 3D
doi: 10.1016/j.biomaterials.2022.121786 bioprinting. Biofabrication. 2015;7(3):035006.
doi: 10.1088/1758-5090/7/3/035006
103. Kim BS, Das S, Jang J, Cho DW. Decellularized
extracellular matrix-based bioinks for engineering tissue- 115. Ng WL, Yeong WY, Naing MW. Polyvinylpyrrolidone-
and organ-specific microenvironments. Chem Rev. based bio-ink improves cell viability and homogeneity
2020;120(19):10608-10661. during drop-on-demand printing. Materials. 2017;
doi: 10.1021/acs.chemrev.9b00808 10(2):190.
doi: 10.3390/ma10020190
104. D’souza AA, Shegokar R. Polyethylene glycol (PEG): a
versatile polymer for pharmaceutical applications. Expert 116. Xiang Y, Miller K, Guan J, Kiratitanaporn W, Tang M,
Opin Drug Deliv. 2016;13(9):1257-1275. Chen S. 3D bioprinting of complex tissues in vitro: State-
Volume 11 Issue 4 (2025) 127 doi: 10.36922/IJB025210209