Page 136 - v11i4
P. 136
International Journal of Bioprinting 3D bioprinting for translational toxicology
of-the-art and future perspectives. Arch Toxicol. 2022;96(3): 128. Yin M, Yao M, Gao S, Zhang AP, Tam H, Wai PA. Rapid 3D
691-710. patterning of poly(acrylic acid) ionic hydrogel for miniature
doi: 10.1007/s00204-021-03212-y pH sensors. Adv Mater. 2016;28(7):1394-1399.
doi: 10.1002/adma.201504021
117. Szűcs D, Fekete Z, Guba M, et al. Toward better drug
development: three-dimensional bioprinting in toxicological 129. Kanaki Z, Chandrinou C, Orfanou IM, et al. Laser-induced
research. Int J Bioprint. 2023;9(2):663. forward transfer printing on microneedles for transdermal
doi: 10.18063/ijb.v9i2.663 delivery of gemcitabine. IJB. 2022;8(2):554.
doi: 10.18063/ijb.v8i2.554
118. Jain P, Kathuria H, Dubey N. Advances in 3D bioprinting
of tissues/organs for regenerative medicine and in-vitro 130. Wang L, Cao H, Jiang H, Fang Y, Jiang D. A novel 3D
models. Biomaterials. 2022;287:121639. bio-printing “liver lobule” microtissue biosensor for the
doi: 10.1016/j.biomaterials.2022.121639 detection of AFB1. Food Res Int. 2023;168:112778.
doi: 10.1016/j.foodres.2023.112778
119. Wu X, Shi W, Liu X, Gu Z. Recent advances in 3D-printing-
based organ-on-a-chip. EngMedicine. 2024;1(1):100003. 131. Shrestha J, Ghadiri M, Shanmugavel M, et al. A rapidly
doi: 10.1016/j.engmed.2024.100003 prototyped lung-on-a-chip model using 3D-printed molds.
Organs-on-a-Chip. 2019;1:100001.
120. Yoon S, Kilicarslan YD, Jeong U, et al. Microfluidics in doi: 10.1016/j.ooc.2020.100001
high-throughput drug screening: Organ-on-a-chip and C.
elegans-based innovations. Biosensors. 2024;14(1):55. 132. Yu C, Ma X, Zhu W, et al. Scanningless and continuous
doi: 10.3390/bios14010055 3D bioprinting of human tissues with decellularized
extracellular matrix. Biomaterials. 2019;194:1-13.
121. Fuchs S, Johansson S, Tjell AØ, Werr G, Mayr T, Tenje M. doi: 10.1016/j.biomaterials.2018.12.009
In-line analysis of organ-on-chip systems with sensors:
integration, fabrication, challenges, and potential. ACS 133. Zhang JXJ, Hoshino K. Nanomaterials for molecular sensing.
Biomater Sci Eng. 2021;7(7):2926-2948. Molecular Sensors and Nanodevices: Principles, Designs and
doi: 10.1021/acsbiomaterials.0c01110 Applications in Biomedical Engineering. Academic Press;
2019:413-487 .
122. Zafeiris K, Brasinika D, Karatza A, et al. Additive doi: 10.1016/b978-0-12-814862-4.00007-7
manufacturing of hydroxyapatite–chitosan–genipin 134. Pan C, Xu J, Gao Q, et al. Sequentially suspended 3D
composite scaffolds for bone tissue engineering applications. bioprinting of multiple-layered vascular models with
Mat Sci Eng C. 2021;119:111639. tunable geometries for in vitro modeling of arterial disorders
doi: 10.1016/j.msec.2020.111639
initiation. Biofabrication. 2023;15(4):045017.
123. Lee V, Singh G, Trasatti JP, et al. Design and fabrication of doi: 10.1088/1758-5090/aceffa
human skin by three-dimensional bioprinting. Tissue Eng 135. Song KH, Highley CB, Rouff A, Burdick JA. Complex 3D‐
Part C Methods. 2014;20(6):473-484. printed microchannels within cell‐degradable hydrogels.
doi: 10.1089/ten.tec.2013.0335 Adv Funct Mater. 2018;28(31):1801331.
124. Xu T, Zhao W, Zhu JM, Albanna MZ, Yoo JJ, Atala A. doi: 10.1002/adfm.201801331
Complex heterogeneous tissue constructs containing 136. Tonti OR, Larson H, Lipp SN, et al. Tissue-specific
multiple cell types prepared by inkjet printing technology. parameters for the design of ECM-mimetic biomaterials.
Biomaterials. 2013;34(1):130-139. Acta Biomater. 2021;132:83-102.
doi: 10.1016/j.biomaterials.2012.09.035 doi: 10.1016/j.actbio.2021.04.017
125. Jodat YA, Kiaee K, Vela Jarquin D, et al. A 3D‐printed hybrid 137. Ma X, Liu J, Zhu W., et al. 3D bioprinting of functional
nasal cartilage with functional electronic olfaction. Adv Sci. tissue models for personalized drug screening and in
2020;7(5):1901878. vitro disease modeling. Adv Drug Deliver Rev. 2018;132:
doi: 10.1002/advs.201901878 235-251.
126. Wang Z, Abdulla R, Parker B, Samanipour R, Ghosh S, Kim doi: 10.1016/j.addr.2018.06.011
K. A simple and high-resolution stereolithography-based 3D 138. Almutary AG, Alnuqaydan AM, Almatroodi SA, Bakshi
bioprinting system using visible light crosslinkable bioinks. HA, Chellappan DK, Tambuwala MM. Development of
Biofabrication. 2015;7(4):045009. 3D-bioprinted colitis-mimicking model to assess epithelial
doi: 10.1088/1758-5090/7/4/045009 barrier function using albumin nano-encapsulated anti-
127. Anada T, Pan CC, Stahl AM, et al. Vascularized bone- inflammatory drugs. Biomimetics. 2023;8(1):41.
mimetic hydrogel constructs by 3D bioprinting to doi: 10.3390/biomimetics8010041
promote osteogenesis and angiogenesis. IJMS. 2019; 139. Kim BS, Ahn M, Cho WW, Gao G, Jang J, Cho DW.
20(5):1096. Engineering of diseased human skin equivalent using
doi: 10.3390/ijms20051096 3D cell printing for representing pathophysiological
Volume 11 Issue 4 (2025) 128 doi: 10.36922/IJB025210209