Page 136 - v11i4
P. 136

International Journal of Bioprinting                                3D bioprinting for translational toxicology




               of-the-art and future perspectives. Arch Toxicol. 2022;96(3):   128. Yin M, Yao M, Gao S, Zhang AP, Tam H, Wai PA. Rapid 3D
               691-710.                                           patterning of poly(acrylic acid) ionic hydrogel for miniature
               doi: 10.1007/s00204-021-03212-y                    pH sensors. Adv Mater. 2016;28(7):1394-1399.
                                                                  doi: 10.1002/adma.201504021
            117. Szűcs D, Fekete Z, Guba M,  et al. Toward better drug
               development: three-dimensional bioprinting in toxicological   129. Kanaki Z, Chandrinou C, Orfanou IM, et al. Laser-induced
               research. Int J Bioprint. 2023;9(2):663.           forward transfer printing on microneedles for transdermal
               doi: 10.18063/ijb.v9i2.663                         delivery of gemcitabine. IJB. 2022;8(2):554.
                                                                  doi: 10.18063/ijb.v8i2.554
            118. Jain P, Kathuria H, Dubey N. Advances in 3D bioprinting
               of tissues/organs for regenerative medicine and in-vitro   130. Wang L, Cao H, Jiang H, Fang Y, Jiang D. A novel 3D
               models. Biomaterials. 2022;287:121639.             bio-printing  “liver  lobule”  microtissue  biosensor  for  the
               doi: 10.1016/j.biomaterials.2022.121639            detection of AFB1. Food Res Int. 2023;168:112778.
                                                                  doi: 10.1016/j.foodres.2023.112778
            119. Wu X, Shi W, Liu X, Gu Z. Recent advances in 3D-printing-
               based organ-on-a-chip. EngMedicine. 2024;1(1):100003.  131. Shrestha J, Ghadiri M, Shanmugavel M,  et al. A rapidly
               doi: 10.1016/j.engmed.2024.100003                  prototyped lung-on-a-chip model using 3D-printed molds.
                                                                  Organs-on-a-Chip. 2019;1:100001.
            120. Yoon  S, Kilicarslan  YD, Jeong U,  et al. Microfluidics  in      doi: 10.1016/j.ooc.2020.100001
               high-throughput drug screening: Organ-on-a-chip and C.
               elegans-based innovations. Biosensors. 2024;14(1):55.  132. Yu C, Ma X, Zhu W,  et al. Scanningless and continuous
               doi: 10.3390/bios14010055                          3D bioprinting of human tissues with decellularized
                                                                  extracellular matrix. Biomaterials. 2019;194:1-13.
            121. Fuchs S, Johansson S, Tjell AØ, Werr G, Mayr T, Tenje M.      doi: 10.1016/j.biomaterials.2018.12.009
               In-line analysis of organ-on-chip systems with sensors:
               integration, fabrication, challenges, and potential.  ACS   133. Zhang JXJ, Hoshino K. Nanomaterials for molecular sensing.
               Biomater Sci Eng. 2021;7(7):2926-2948.             Molecular Sensors and Nanodevices: Principles, Designs and
               doi: 10.1021/acsbiomaterials.0c01110               Applications in Biomedical Engineering.  Academic  Press;
                                                                  2019:413-487 .
            122. Zafeiris K, Brasinika D, Karatza A,  et al.  Additive      doi: 10.1016/b978-0-12-814862-4.00007-7
               manufacturing  of  hydroxyapatite–chitosan–genipin  134. Pan C, Xu J, Gao Q,  et al. Sequentially suspended 3D
               composite scaffolds for bone tissue engineering applications.   bioprinting of multiple-layered vascular models with
               Mat Sci Eng C. 2021;119:111639.                    tunable geometries for in vitro modeling of arterial disorders
               doi: 10.1016/j.msec.2020.111639
                                                                  initiation. Biofabrication. 2023;15(4):045017.
            123. Lee V, Singh G, Trasatti JP, et al. Design and fabrication of      doi: 10.1088/1758-5090/aceffa
               human  skin  by  three-dimensional  bioprinting.  Tissue Eng   135. Song KH, Highley CB, Rouff A, Burdick JA. Complex 3D‐
               Part C Methods. 2014;20(6):473-484.                printed microchannels within cell‐degradable  hydrogels.
               doi: 10.1089/ten.tec.2013.0335                     Adv Funct Mater. 2018;28(31):1801331.
            124. Xu T, Zhao W, Zhu JM, Albanna MZ, Yoo JJ, Atala A.      doi: 10.1002/adfm.201801331
               Complex heterogeneous tissue constructs containing   136. Tonti OR, Larson H, Lipp SN,  et  al. Tissue-specific
               multiple cell types prepared by inkjet printing technology.   parameters for the design of ECM-mimetic biomaterials.
               Biomaterials. 2013;34(1):130-139.                  Acta Biomater. 2021;132:83-102.
               doi: 10.1016/j.biomaterials.2012.09.035            doi: 10.1016/j.actbio.2021.04.017
            125. Jodat YA, Kiaee K, Vela Jarquin D, et al. A 3D‐printed hybrid   137. Ma X, Liu J, Zhu W.,  et al. 3D bioprinting of functional
               nasal cartilage with functional electronic olfaction. Adv Sci.   tissue models for personalized drug  screening and in
               2020;7(5):1901878.                                 vitro disease modeling.  Adv Drug Deliver Rev. 2018;132:
               doi: 10.1002/advs.201901878                        235-251.
            126. Wang Z, Abdulla R, Parker B, Samanipour R, Ghosh S, Kim      doi: 10.1016/j.addr.2018.06.011
               K. A simple and high-resolution stereolithography-based 3D   138. Almutary AG,  Alnuqaydan AM,  Almatroodi  SA,  Bakshi
               bioprinting system using visible light crosslinkable bioinks.   HA, Chellappan DK, Tambuwala MM. Development of
               Biofabrication. 2015;7(4):045009.                  3D-bioprinted colitis-mimicking model to assess epithelial
               doi: 10.1088/1758-5090/7/4/045009                  barrier function using albumin nano-encapsulated anti-
            127. Anada  T,  Pan CC,  Stahl  AM,  et al.  Vascularized  bone-  inflammatory drugs. Biomimetics. 2023;8(1):41.
               mimetic hydrogel constructs by 3D bioprinting to      doi: 10.3390/biomimetics8010041
               promote osteogenesis and angiogenesis.  IJMS. 2019;   139. Kim BS, Ahn M, Cho WW, Gao G, Jang J, Cho DW.
               20(5):1096.                                        Engineering  of  diseased  human  skin  equivalent using
               doi: 10.3390/ijms20051096                          3D cell printing for representing pathophysiological


            Volume 11 Issue 4 (2025)                       128                            doi: 10.36922/IJB025210209
   131   132   133   134   135   136   137   138   139   140   141