Page 133 - v11i4
P. 133

International Journal of Bioprinting                                3D bioprinting for translational toxicology




            44.  Kwatra D, Budda B, Vadlapudi AD, Vadlapatla RK, Pal      doi: 10.1038/nature12517
               D, Mitra AK. Transfected mdck cell line with enhanced   56.  Huch M, Dorrell C, Boj SF, et al. In vitro expansion of single
               expression of Cyp3a4 and P-glycoprotein as a model to   Lgr5+ liver stem cells induced by wnt-driven regeneration.
               study their role in drug transport and metabolism.  Mol   Nature. 2013;494(7436):247-250.
               Pharm. 2012;9(7):1877-1886.
               doi: 10.1021/mp200487h                             doi: 10.1038/nature11826
                                                               57.  Lewis-Israeli YR, Wasserman AH, Gabalski MA,  et  al.
            45.  Garcia-Canton C, Minet E, Anadon A, Meredith C.
               Metabolic characterization of cell systems used in in vitro   Self-assembling human heart organoids for the modeling
               toxicology testing: lung cell system BEAS-2B as a working   of cardiac development and congenital heart disease.  Nat
               example. Toxicol In Vitro. 2013;27(6):1719-1727.   Commun. 2021;12(1):5142.
               doi: 10.1016/j.tiv.2013.05.001                     doi: 10.1038/s41467-021-25329-5
                                                               58.  Takasato M, Er PX, Chiu HS, et al. Erratum: kidney organoids
            46.  Edmondson R, Broglie JJ, Adcock AF, Yang L. Three-
               dimensional cell culture systems and their applications in   from human iPS cells contain multiple lineages and model
               drug discovery and cell-based biosensors. Assay Drug Dev   human nephrogenesis. Nature. 2016;536(7615):238.
               Technol. 2014;12(4):207-218.                       doi: 10.1038/nature17982
               doi: 10.1089/adt.2014.573                       59.  Corrò C, Novellasdemunt L, Li VSW. A brief history
            47.  Kapałczyńska M, Kolenda T, Przybyła W, et al. 2D and 3D   of organoids.  Am J Physiol Cell Physiol. 2020;319(1):
               cell cultures–a comparison of different types of cancer cell   C151-C165.
               cultures. Arch Med Sci. 2018;14(4):910-919.        doi: 10.1152/ajpcell.00120.2020
               doi: 10.5114/aoms.2016.63743                    60.  Winkler AS, Cherubini A, Rusconi F, et al. Human airway
            48.  Deguchi S, Shintani T, Harada K, et al. In vitro model for a   organoids and microplastic fibers: a new exposure model for
               drug assessment of cytochrome P450 family 3 subfamily a   emerging contaminants. Environ Int. 2022;163:107200.
               member 4 substrates using human induced pluripotent stem      doi: 10.1016/j.envint.2022.107200
               cells and genome editing technology.  Hepatol Commun.   61.  Huh D, Matthews BD, Mammoto A, Montoya-Zavala
               2021;5(8):1385-1399.                               M, Hsin HY, Ingber DE. Reconstituting organ-level lung
               doi: 10.1002/hep4.1729                             functions on a chip. Science. 2010;328(5986):1662-1668.
            49.  Jensen C, Teng Y. Is it time to start transitioning from 2D to      doi: 10.1126/science.1188302
               3D cell culture? Front Mol Biosci. 2020;7:33.   62.  Oleaga C, Bernabini C, Smith AST,  et al. Multi-organ
               doi: 10.3389/fmolb.2020.00033                      toxicity demonstration in a functional human in
            50.  Astashkina AI, Mann BK, Prestwich GD, Grainger DW.   vitro system composed of four organs.  Sci Rep. 2016;
               Comparing predictive drug nephrotoxicity biomarkers in   6(1):20030.
               kidney 3-D primary organoid culture and immortalized cell      doi: 10.1038/srep20030
               lines. Biomaterials. 2012;33(18):4712-4721.     63.  Liu X, Wang X, Zhang L, et al. 3D liver tissue model with
               doi: 10.1016/j.biomaterials.2012.03.001            branched vascular networks by multimaterial bioprinting.
            51.  Zhao Z, Chen X, Dowbaj AM,  et al. Organoids.  Nat Rev   Adv Healthc Mater. 2021;10(23):e2101405.
               Methods Primers. 2022;2:94.                        doi: 10.1002/adhm.202101405
               doi: 10.1038/s43586-022-00174-y                 64.  Xu Y, Hu Y, Liu C, Yao H, Liu B, Mi S. A novel strategy
            52.  Sato T, Vries RG, Snippert HJ, et al. Single Lgr5 stem cells   for creating tissue-engineered biomimetic blood vessels
               build crypt-villus structures in vitro without a mesenchymal   using 3D bioprinting technology.  Materials (Basel).
               niche. Nature. 2009;459(7244):262-265.             2018;11(9):1581.
               doi: 10.1038/nature07935                           doi: 10.3390/ma11091581
            53.  Broda TR, McCracken KW, Wells JM. Generation of human   65.  Richards D, Jia J, Yost M, Markwald R, Mei Y. 3D bioprinting
               antral and fundic gastric organoids from pluripotent stem   for vascularized tissue fabrication.  Ann Biomed Eng.
               cells. Nat Protoc. 2019;14(1):28-50.               2017;45(1):132-147.
               doi: 10.1038/s41596-018-0080-z                     doi: 10.1007/s10439-016-1653-z
            54.  Miller AJ, Dye BR, Ferrer-Torres D, et al. Generation of lung   66.  Liu J, Miller K, Ma X, et al. Direct 3D bioprinting of cardiac
               organoids from human pluripotent stem cells in vitro. Nat   micro-tissues mimicking native myocardium. Biomaterials.
               Protoc. 2019;14(2):518-540.                        2020;256:120204.
               doi: 10.1038/s41596-018-0104-8                     doi: 10.1016/j.biomaterials.2020.120204
            55.  Lancaster  MA,  Renner  M,  Martin  CA,  et al.  Cerebral   67.  Wang Z, Wang L, Li T, et al. 3D bioprinting in cardiac tissue
               organoids model human brain development and        engineering. Theranostics. 2021;11(16):7948-7969.
               microcephaly. Nature. 2013;501(7467):373-379.      doi: 10.7150/thno.61621


            Volume 11 Issue 4 (2025)                       125                            doi: 10.36922/IJB025210209
   128   129   130   131   132   133   134   135   136   137   138