Page 214 - v11i4
P. 214

International Journal of Bioprinting                                      Bioprinted osteoarthritis scaffolds




               cocultures of osteochondral and synovial explants. Front Vet      doi: 10.1016/j.slast.2024.100132.
               Sci. 2017;4(9):152.                             34.  Wu KY, Tabari A, Mazerolle E, et al. Towards precision
               doi: 10.3389/fvets.2017.00152.
                                                                  ophthalmology: the role of 3D printing and bioprinting
            24.  Lin H, Lozito TP, Alexander PG, et al. Stem cell-based   in oculoplastic surgery, retinal, corneal, and glaucoma
               microphysiological  osteochondral  system  to  model   treatment. Biomimetics (Basel). 2024;9(3):145.
               tissue response to interleukin-1beta.  Mol Pharm.      doi: 10.3390/biomimetics9030145.
               2014;11(7):2203-2212.                           35.  Jiu J, Liu H, Li D, et al. 3D bioprinting approaches for spinal
               doi: 10.1021/mp500136b.                            cord injury repair. Biofabrication. 2024;16(3):032003.
            25.  Dönges L, Damle A, Mainardi A, et al. Engineered      doi: 10.1088/1758-5090.
               human osteoarthritic cartilage organoids.  Biomaterials.   36.  Das S, Valoor R, Ratnayake P, et al. Bioprinting complex
               2024;308(7):122549.                                cartilaginous  structures  with  clinically  compliant
               doi: 10.1016/j.biomaterials.2024.122549.           biomaterials. Adv Funct Mater. 2015;25(48):7406-7417.
            26.  Hall GN, Mendes LF, Gklava C, et al. Developmentally      doi: 10.1021/acsabm.3c01194.
               engineered  callus  organoid  bioassemblies  exhibit  37.Schuurman W, Levett PA, Pot MW, et al. Gelatin–methacrylamide
               predictive in vivo long bone healing.  Adv Sci (Weinh).   hydrogels as potential biomaterials for fabrication of tissue-
               2020;7(2):1902295.                                 engineered cartilage constructs.  Macromol Biosci. 2013;
               doi: 10.1002/advs.201902295.                       13(5):551-561.
            27.  SunY, You Y, Wu Q, et al. Genetically inspired organoids      doi: 10.1002/mabi.201200471.
               prevent joint degeneration and alleviate chondrocyte   38.  Ávila HM, Schwarz S, Rotter N, et al. 3D bioprinting of
               senescence via Col11a1-HIF1alpha-mediated glycolysis-  human  chondrocyte-laden  nanocellulose  hydrogels  for
               OXPHOS    metabolism  shift.  Clin  Transl  Med.   patient-specific auricular cartilage regeneration. Bioprinting.
               2024;14(2):e1574.                                  2016;1–2:22-35.
               doi: 10.1002/ctm2.1574.                            doi: 10.1016/j.bprint.2016.08.003.
            28.  Shen C, Wang J, Li G, et al. Boosting cartilage repair with silk   39.  Markstedt K, Mantas A, Tournier I, et al. 3D Bioprinting
               fibroin-DNA hydrogel-based cartilage organoid precursor.   human chondrocytes with nanocellulose–alginate bioink for
               Bioact Mater. 2024;35(2):429-444.                  cartilage tissue engineering applications. Biomacromolecules.
               doi: 10.1016/j.bioactmat.2024.02.016.              2015;16(5):1489-1496.
            29.  Thompson CL, Hopkins T, Bevan C, et al. Human      doi: 10.1021/acs.biomac.5b00188.
               vascularised  synovium-on-a-chip:  a  mechanically  40.  Rastogi P, Kandasubramanian B Review of alginate-based
               stimulated, microfluidic model to investigate synovial   hydrogel bioprinting for application in tissue engineering.
               inflammation and monocyte recruitment.  Biomed Mater.   Biofabrication. 2019;11(4):042001.
               2023;18(6):065013.                                 doi: 10.1088/1758-5090/ab331e.
               doi: 10.1088/1748-605X/acf976.
                                                               41.  Zhang X, Liu K, Qin M, et al. Abundant tannic acid modified
            30.  Lin Z, Li Z, Li EN, et al. Osteochondral tissue chip derived   gelatin/sodium alginate biocomposite hydrogels with high
               from iPSCs: modeling OA pathologies and testing drugs.   toughness, antifreezing, antioxidant and antibacterial
               Front Bioeng Biotechnol. 2019;7(12):411.           properties. Carbohydr Polym. 2023;309(6):120702.
               doi: 10.3389/fbioe.2019.00411.                     doi: 10.1016/j.carbpol.2023.120702.
            31.  Ong LJY, Fan X, Sun AR, et al. Controlling microenvironments   42.  Lai Y, Cao H, Wang X, et al. Porous composite scaffold
               with organs-on-chips for osteoarthritis modelling.  Cells.   incorporating  osteogenic  phytomolecule icariin for
               2023;12(4):579.                                    promoting skeletal regeneration in challenging osteonecrotic
               doi: 10.3390/cells12040579.                        bone in rabbits. Biomaterials. 2018;153(1):1-13.
            32.  Rothbauer M, Reihs EI, Fischer A, et al. A progress report      doi: 10.1016/j.biomaterials.2017.10.025.
               and roadmap for microphysiological systems and organ-  43.  Liu Z, Fang R, Meng Q The method of type II collagenase
               on-a-chip  technologies  to  be  more  predictive  models  in   digestion can quickly obtain a large number of highly
               human (knee) osteoarthritis.  Front Bioeng Biotechnol.   purified rat articular cartilage cells. J Clin Rehabil Tissue Eng
               2022;10(6):886360.                                 Res. 2011;15(10):9323-9326.
               doi: 10.3389/fbioe.2022.886360.                    doi: 10.3969/j.issn.1673-8225.2011.50.004.
            33.  Nu Aye KT, Ferreira JN, Chaweewannakorn C, et al.   44.  Chen W, Xu Y, Li Y, et al. 3D printing electrospinning fiber-
               Advances in the application of iron oxide nanoparticles   reinforced decellularized extracellular matrix for cartilage
               (IONs and SPIONs) in three-dimensional cell culture   regeneration. Chem Eng J. 2020;15(2):122986.
               systems. SLAS Technol. 2024;29(3):100132.          doi: 10.1016/j.cej.2019.122986.



            Volume 11 Issue 4 (2025)                       206                            doi: 10.36922/IJB025150136
   209   210   211   212   213   214   215   216   217   218   219