Page 215 - v11i4
P. 215

International Journal of Bioprinting                                      Bioprinted osteoarthritis scaffolds




            45.  Wu Y, (William) Lin ZY, Wenger AC, et al. 3D bioprinting of      doi: 10.3390/polym16223143.
               liver-mimetic construct with alginate/cellulose nanocrystal   58.  Schwarz S, Kuth S, Distler T, et al. 3D printing and
               hybrid bioink. Bioprinting. 2018;9(3):1-6.         characterization  of  human  nasoseptal  chondrocytes
               doi: 10.1016/j.bprint.2017.12.001.
                                                                  laden  dual  crosslinked  oxidized  alginate-gelatin
            46.  Chung JHY, Naficy S, Yue Z, et al. Bio-ink properties and   hydrogels for cartilage repair approaches.  Mater Sci Eng.
               printability for extrusion printing living cells. Biomater Sci.   2020;116(11):111189.
               2013;1(7):763-773.                                 doi: 10.1016/j.msec.2020.111189.
               doi: 10.1039/c3bm00012e.
                                                               59.  Zhao P, Deng C, Xu H, et al. Fabrication of photo-
            47.   Duan B, Hockaday LA, Kang KH, et al. 3D bioprinting of   crosslinked chitosan gelatin scaffold in sodium alginate
               heterogeneous aortic valve conduits with alginate/gelatin   hydrogel for chondrocyte culture.  Bio Med Mater Eng.
               hydrogels. Biomed Mater Res. 2013;101(5):1255-1264.  2014;24(1):633-641.
               doi: 10.1002/jbm.a.34420.                          doi: 10.3233/bme-130851.
            48.  Ferris CJ, Gilmore KJ, Beirne S, et al. Bio-ink for on-demand   60.  Xu HQ, Liu JC, Zhang ZY, et al. A review on cell damage,
               printing of living cells. Biomater Sci. 2013;1(2):224-230.  viability, and functionality during 3D bioprinting. Mil Med
               doi: 10.1039/c2bm00114d.                           Res. 2022;9(1):70.
                                                                  doi: 10.1186/s40779-022-00429-5.
            49.  Skardal A, Atala A. Biomaterials for integration with 3-D
               bioprinting. Ann Biomed Eng. 2015;43(3):730-746.  61.  Shi P, Laude A, Yeong WY. Investigation of cell viability
               doi: 10.1007/s10439-014-1207-1.                    and morphology in 3D bio-printed alginate constructs with
                                                                  tunable stiffness. J Biomed Mater Res. 2017;105(4):1009-1018.
            50.  Hu W, Wang Z, Xiao Y, et al. Advances in crosslinking
               strategies of biomedical hydrogels.  Biomater Sci.      doi: 10.1002/jbm.a.35971.
               2019;7(3):843-855.                              62.  Soltan N, Ning L, Mohabatpour F, et al. Printability and cell
               doi: 10.1039/c8bm01246f.                           viability in bioprinting alginate dialdehydegelatin scaffolds.
                                                                  ACS Biomater Sci Eng. 2019;5(6):2976-2987.
            51.   Shanto PC, Al Fahad Md A, Jung HI, et al. Multi-functional
               dual-layer  nanofibrous  membrane  for  prevention     doi: 10.1021/acsbiomaterials.9b00167.
               of  postoperative  pancreatic  leakage.  Biomaterials.   63.  Coryell PR, Diekman BO, Loeser RF. Mechanisms
               2024;307(6):122508.                                and therapeutic implications of cellular senescence in
               doi: 10.1016/j.biomaterials.2024.122508.           osteoarthritis. Nat Rev Rheumatol. 2021;17(1):47-57.
                                                                  doi: 10.1038/s41584-020-00533-7.
            52.  Mohamadhoseini M, Mohamadnia Z. Alginate-based self-
               healing hydrogels assembled by dual cross-linking strategy:   64.  Lou C, Deng A, Zheng H, et al. Pinitol suppresses
               fabrication and evaluation of mechanical properties.  Int J   TNF-α-induced  chondrocyte  senescence.  Cytokine.
               Biol Macromol. 2021;191(11):139-151.               2020;130:155047.
               doi: 10.1016/j.ijbiomac.2021.09.062.               doi: 10.1016/j.cyto.2020.155047.
            53.  Miri AK, Khalilpour A, Cecen B, et al. Multiscale bioprinting   65.  Arra M, Swarnkar G, Ke K, et al. Generation in chondrocytes
               of vascularized models. Biomaterials. 2019;198(4):204-216.  is a potential therapeutic target for osteoarthritis.  Nat
               doi: 10.1016/j.biomaterials.2018.08.006.           Commun. 2020;11(1):3427.
                                                                  doi: 10.1038/s41467-020-17242-0.
            54.  Bhaladhare S, Bhattacharjee S. Chemical, physical, and
               biological stimuli responsive nanogels for biomedical   66.  Ma MW, Wang J, Zhang Q, et al. NADPH oxidase in brain
               applications (mechanisms, concepts, and advancements): a   injury and neurodegenerative disorders. Mol Neurodegener.
               review. Int J Biol Macromol. 2023;226(1):535-553.  2017;12(1):7.
               doi: 10.1016/j.ijbiomac.2022.12.076.               doi: 10.1186/s13024-017-0150-7.
            55.  Giuseppe MD, Law N, Webb B, et al. Mechanical behaviour   67.  Liang  H, Luo  R,  Li  G, et  al. The  proteolysis  of ECM
               of alginate-gelatin hydrogels for 3D bioprinting.  J Mech   in intervertebral disc degeneration.  Int J Mol Sci.
               Behav Biomed Mater. 2018;79(3):150-157.            2022;23(3):1715.
               doi: 10.1016/j.jmbbm.2017.12.018.                  doi: 10.3390/ijms23031715.
            56.  Caliari SR, Burdick JA. A practical guide to hydrogels for cell   68.   Coppé JP, Desprez PY, Krtolica A, et al. The senescence-
               culture. Nat Methods. 2016;13(5):405-414.          associated secretory phenotype:  the dark side  of tumor
               doi: 10.1038/nmeth.3839.                           suppression. Annu Rev Pathol. 2010;5:99-118.
                                                                  doi: 10.1146/annurev-pathol-121808-102144.
            57.  Mahmoudi C, Douma NT, Mahmoudi H, et al. Developing
               and characterizing a biocompatible hydrogel obtained   69.  Sun Y, Wu Q, Dai K, et al. Generating 3D-cultured organoids
               by cross-linking gelatin with oxidized sodium alginate   for preclinical modeling and treatment of degenerative joint
               for potential biomedical applications.  Polymers  (Basel).   disease. Signal Transduct Target Ther. 2021;6(1):380.
               2024;16(22):3143.                                  doi: 10.1038/s41392-021-00675-4.


            Volume 11 Issue 4 (2025)                       207                            doi: 10.36922/IJB025150136
   210   211   212   213   214   215   216   217   218   219   220