Page 215 - v11i4
P. 215
International Journal of Bioprinting Bioprinted osteoarthritis scaffolds
45. Wu Y, (William) Lin ZY, Wenger AC, et al. 3D bioprinting of doi: 10.3390/polym16223143.
liver-mimetic construct with alginate/cellulose nanocrystal 58. Schwarz S, Kuth S, Distler T, et al. 3D printing and
hybrid bioink. Bioprinting. 2018;9(3):1-6. characterization of human nasoseptal chondrocytes
doi: 10.1016/j.bprint.2017.12.001.
laden dual crosslinked oxidized alginate-gelatin
46. Chung JHY, Naficy S, Yue Z, et al. Bio-ink properties and hydrogels for cartilage repair approaches. Mater Sci Eng.
printability for extrusion printing living cells. Biomater Sci. 2020;116(11):111189.
2013;1(7):763-773. doi: 10.1016/j.msec.2020.111189.
doi: 10.1039/c3bm00012e.
59. Zhao P, Deng C, Xu H, et al. Fabrication of photo-
47. Duan B, Hockaday LA, Kang KH, et al. 3D bioprinting of crosslinked chitosan gelatin scaffold in sodium alginate
heterogeneous aortic valve conduits with alginate/gelatin hydrogel for chondrocyte culture. Bio Med Mater Eng.
hydrogels. Biomed Mater Res. 2013;101(5):1255-1264. 2014;24(1):633-641.
doi: 10.1002/jbm.a.34420. doi: 10.3233/bme-130851.
48. Ferris CJ, Gilmore KJ, Beirne S, et al. Bio-ink for on-demand 60. Xu HQ, Liu JC, Zhang ZY, et al. A review on cell damage,
printing of living cells. Biomater Sci. 2013;1(2):224-230. viability, and functionality during 3D bioprinting. Mil Med
doi: 10.1039/c2bm00114d. Res. 2022;9(1):70.
doi: 10.1186/s40779-022-00429-5.
49. Skardal A, Atala A. Biomaterials for integration with 3-D
bioprinting. Ann Biomed Eng. 2015;43(3):730-746. 61. Shi P, Laude A, Yeong WY. Investigation of cell viability
doi: 10.1007/s10439-014-1207-1. and morphology in 3D bio-printed alginate constructs with
tunable stiffness. J Biomed Mater Res. 2017;105(4):1009-1018.
50. Hu W, Wang Z, Xiao Y, et al. Advances in crosslinking
strategies of biomedical hydrogels. Biomater Sci. doi: 10.1002/jbm.a.35971.
2019;7(3):843-855. 62. Soltan N, Ning L, Mohabatpour F, et al. Printability and cell
doi: 10.1039/c8bm01246f. viability in bioprinting alginate dialdehydegelatin scaffolds.
ACS Biomater Sci Eng. 2019;5(6):2976-2987.
51. Shanto PC, Al Fahad Md A, Jung HI, et al. Multi-functional
dual-layer nanofibrous membrane for prevention doi: 10.1021/acsbiomaterials.9b00167.
of postoperative pancreatic leakage. Biomaterials. 63. Coryell PR, Diekman BO, Loeser RF. Mechanisms
2024;307(6):122508. and therapeutic implications of cellular senescence in
doi: 10.1016/j.biomaterials.2024.122508. osteoarthritis. Nat Rev Rheumatol. 2021;17(1):47-57.
doi: 10.1038/s41584-020-00533-7.
52. Mohamadhoseini M, Mohamadnia Z. Alginate-based self-
healing hydrogels assembled by dual cross-linking strategy: 64. Lou C, Deng A, Zheng H, et al. Pinitol suppresses
fabrication and evaluation of mechanical properties. Int J TNF-α-induced chondrocyte senescence. Cytokine.
Biol Macromol. 2021;191(11):139-151. 2020;130:155047.
doi: 10.1016/j.ijbiomac.2021.09.062. doi: 10.1016/j.cyto.2020.155047.
53. Miri AK, Khalilpour A, Cecen B, et al. Multiscale bioprinting 65. Arra M, Swarnkar G, Ke K, et al. Generation in chondrocytes
of vascularized models. Biomaterials. 2019;198(4):204-216. is a potential therapeutic target for osteoarthritis. Nat
doi: 10.1016/j.biomaterials.2018.08.006. Commun. 2020;11(1):3427.
doi: 10.1038/s41467-020-17242-0.
54. Bhaladhare S, Bhattacharjee S. Chemical, physical, and
biological stimuli responsive nanogels for biomedical 66. Ma MW, Wang J, Zhang Q, et al. NADPH oxidase in brain
applications (mechanisms, concepts, and advancements): a injury and neurodegenerative disorders. Mol Neurodegener.
review. Int J Biol Macromol. 2023;226(1):535-553. 2017;12(1):7.
doi: 10.1016/j.ijbiomac.2022.12.076. doi: 10.1186/s13024-017-0150-7.
55. Giuseppe MD, Law N, Webb B, et al. Mechanical behaviour 67. Liang H, Luo R, Li G, et al. The proteolysis of ECM
of alginate-gelatin hydrogels for 3D bioprinting. J Mech in intervertebral disc degeneration. Int J Mol Sci.
Behav Biomed Mater. 2018;79(3):150-157. 2022;23(3):1715.
doi: 10.1016/j.jmbbm.2017.12.018. doi: 10.3390/ijms23031715.
56. Caliari SR, Burdick JA. A practical guide to hydrogels for cell 68. Coppé JP, Desprez PY, Krtolica A, et al. The senescence-
culture. Nat Methods. 2016;13(5):405-414. associated secretory phenotype: the dark side of tumor
doi: 10.1038/nmeth.3839. suppression. Annu Rev Pathol. 2010;5:99-118.
doi: 10.1146/annurev-pathol-121808-102144.
57. Mahmoudi C, Douma NT, Mahmoudi H, et al. Developing
and characterizing a biocompatible hydrogel obtained 69. Sun Y, Wu Q, Dai K, et al. Generating 3D-cultured organoids
by cross-linking gelatin with oxidized sodium alginate for preclinical modeling and treatment of degenerative joint
for potential biomedical applications. Polymers (Basel). disease. Signal Transduct Target Ther. 2021;6(1):380.
2024;16(22):3143. doi: 10.1038/s41392-021-00675-4.
Volume 11 Issue 4 (2025) 207 doi: 10.36922/IJB025150136