Page 321 - v11i4
P. 321

International Journal of Bioprinting                                 3D scaffold prevents tendon ossification




            34.  Ji X, Li Y, Wang J, et al. Silk protein gene engineering   45.  Jacob S, Reshmy R, Antony S, et al. Nanocellulose in tissue
               and its applications: recent advances in biomedicine   engineering and bioremediation: mechanism of action.
               driven by molecular biotechnology.  Drug Des Devel Ther.   Bioengineered. 2022;13(5):12823-12833.
               2025;19:599-626.                                   doi: 10.1080/21655979.2022.2074739
               doi: 10.2147/dddt.S504783
                                                               46.  Veronesi F, Giavaresi G, Bellini D, Casagranda V, Pressato D,
            35.  Yin J, Fang Y, Xu L, Ahmed A. High-throughput fabrication   Fini M. Evaluation of a new collagen-based medical device
                                                                         ®
               of  silk  fibroin/hydroxypropyl  methylcellulose  (SF/HPMC)   (ElastiCo ) for the treatment of acute Achilles tendon injury
               nanofibrous scaffolds for skin tissue engineering. Int J Biol   and prevention of peritendinous adhesions: An in vitro
               Macromol. 2021;183:1210-1221.                      biocompatibility and in vivo investigation.  J Tissue Eng
               doi: 10.1016/j.ijbiomac.2021.05.026                Regen Med. 2020;14(8):1113-1125.
                                                                  doi: 10.1002/term.3085
            36.  Su D, Yao M, Liu J, Zhong Y, Chen X, Shao Z. Enhancing
               mechanical properties of silk fibroin hydrogel through   47.  Webb WR, Dale TP, Lomas AJ, et al. The application
               restricting the growth of β-sheet domains. ACS Appl Mater   of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)
               Interfaces. 2017;9(20):17489-17498.                scaffolds for tendon repair in the rat model. Biomaterials.
               doi: 10.1021/acsami.7b04623                        2013;34(28):6683-6694.
                                                                  doi: 10.1016/j.biomaterials.2013.05.041
            37.  Bi Y, Ehirchiou D, Kilts TM, et al. Identification of tendon
               stem/progenitor cells and the role of the extracellular matrix   48.  Kim SH, Park JH, Kwon JS, et al. NIR fluorescence for
               in their niche. Nat Med. 2007;13(10):1219-1227.    monitoring  in  vivo  scaffold  degradation  along  with  stem
               doi: 10.1038/nm1630                                cell tracking in bone tissue engineering.  Biomaterials.
                                                                  2020;258:120267.
            38.  He W, Jiang C, Zhou P, Hu X, Gu X, Zhang S. Role of
               tendon-derived stem cells in tendon and ligament repair:      doi: 10.1016/j.biomaterials.2020.120267
               focus on tissue engineer. Front Bioeng Biotechnol. 2024;12:   49.  Salehi S, Koeck K, Scheibel T. Spider silk for tissue
               1357696.                                           engineering applications. Molecules. 2020;25(3):737.
               doi: 10.3389/fbioe.2024.1357696                    doi: 10.3390/molecules25030737
            39.  Chen J, Jiang C, Yin L, et al. A review of the role of tendon   50.  Xie Y, Zhang F, Akkus O, King MW. A collagen/PLA
               stem  cells  in  tendon-bone  regeneration.  Med Sci Monit.   hybrid scaffold supports tendon-derived cell growth for
               2023;29:e940805.                                   tendon repair and regeneration. J Biomed Mater Res B Appl
               doi: 10.12659/msm.940805                           Biomater. 2022;110(12):2624-2635.
                                                                  doi: 10.1002/jbm.b.35116
            40.  Lu J, Chen H, Lyu K, et al. The functions and mechanisms of
               tendon stem/progenitor cells in tendon healing. Stem Cells   51.  Shirosaki Y, Tsukatani Y, Okamoto K, Hayakawa S, Osaka
               Int. 2023;2023:1258024.                            A. Preparation and drug release profile of chitosan-siloxane
               doi: 10.1155/2023/1258024                          hybrid capsules coated with hydroxyapatite. Pharmaceutics.
                                                                  2022;14(5):1111.
            41.  Jahani A, Nourbakhsh MS, Ebrahimzadeh MH,
               Mohammadi M, Yari D, Moradi A. Biomolecules-loading      doi: 10.3390/pharmaceutics14051111
               of 3D-printed alginate-based scaffolds for cartilage tissue   52.  Fei Y, Ma Y, Zhang H, Li H, Feng G, Fang J. Nanotechnology
               engineering applications: a review on current status and   for research and treatment of the intestine. J Nanobiotechnol.
               future prospective. Arch Bone Jt Surg. 2024;12(2):92-101.  2022;20(1):430.
               doi: 10.22038/abjs.2023.73275.3396                 doi: 10.1186/s12951-022-01517-3
            42.  Li M, Shi T, Yao D, Yue X, Wang H, Liu K. High-  53.  Sadeghzadeh H, Mehdipour A, Dianat-Moghadam H,
               cytocompatible  semi-IPN  bio-ink  with  wide  molecular   et al. PCL/Col I-based magnetic nanocomposite scaffold
               weight distribution for extrusion 3D bioprinting. Sci Rep.   provides an osteoinductive environment for ADSCs in
               2022;12(1):6349.                                   osteogenic cues-free media conditions. Stem Cell Res Ther.
               doi: 10.1038/s41598-022-10338-1                    2022;13(1):143.
                                                                  doi: 10.1186/s13287-022-02816-0
            43.  Delkash Y, Gouin M, Rimbeault T, et al. Bioprinting and in
               vitro characterization of an eggwhite-based cell-laden patch   54.  Zheng A, Wang X, Xin X, et al. Promoting lacunar bone
               for endothelialized tissue engineering applications. J Funct   regeneration with an injectable hydrogel adaptive to the
               Biomater. 2021;12(3):45.                           microenvironment. Bioact Mater. 2023;21:403-421.
               doi: 10.3390/jfb12030045                           doi: 10.1016/j.bioactmat.2022.08.031
            44.  Kolluru PV, Lipner J, Liu W, et al. Strong and tough   55.  Eggermont LJ, Rogers ZJ, Colombani T, Memic A, Bencherif
               mineralized PLGA nanofibers for tendon-to-bone scaffolds.   SA. Injectable cryogels for biomedical applications. Trends
               Acta Biomater. 2013;9(12):9442-9450.               Biotechnol. 2020;38(4):418-431.
               doi: 10.1016/j.actbio.2013.07.042                  doi: 10.1016/j.tibtech.2019.09.008



            Volume 11 Issue 4 (2025)                       313                            doi: 10.36922/IJB025210203
   316   317   318   319   320   321   322   323   324   325   326