Page 432 - v11i4
P. 432

International Journal of Bioprinting                                 Swelling–shrinking behavior of hydrogel




            Reference                                             doi: 10.1115/1.4063134.
                                                               12.  Bozek J, Kurchakova O, Michel J, et al. Pneumatic conveying
            1   Kühl J, Gorb S, Kern M, et al. Extrusion-based 3D printing   inkjet  bioprinting  for  the  processing  of  living  cells.
               of osteoinductive scaffolds with a spongiosa-inspired   Biofabrication. 2025;17:025003.
               structure. Front Bioeng Biotechnol. 2023;11:1268049.  doi: 10.1088/1758-5090/ada8e2.
               doi: 10.3389/fbioe.2023.1268049.
                                                               13.  Zhang P, Gao Q, Yu K, Yao Y, Lu L. Investigation on the
            2.   Dutta SD, An JM, Hexiu J, et al. 3D bioprinting of engineered   temperature control accuracy of a print head for extrusion
               exosomes secreted from M2-polarized macrophages through   3D printing and its improved design.  Biomedicines.
               immunomodulatory biomaterial promotes in vivo wound   2022;10(6):1233.
               healing and angiogenesis. Bioact Mater. 2025;45:345-362.  doi: 10.3390/biomedicines10061233.
               doi: 10.1016/j.bioactmat.2024.11.026.
                                                               14.  Gao Q, Yu K, Chen F, Lu L, Zhang P. Investigation on the
            3.   Daly AC, Prendergast ME, Hughes AJ, Burdick JA.   temperature distribution uniformity of an extrusion-
               Bioprinting for the biologist. Cell. 2021;184(1):18-32.  based 3D print head and its temperature control strategy.
               doi: 10.1016/j.cell.2020.12.002.                   Pharmaceutics. 2022;14(10):2108.
            4.   Wang H, Guo K, Zhang L, et al.  Valve-based consecutive   doi: 10.3390/pharmaceutics14102108.
               bioprinting  method  for  multimaterial  tissue-like   15.  Ji S, Guvendiren M. Complex 3D bioprinting methods. APL
               constructs with controllable interfaces.  Biofabrication.   Bioeng. 2021;5(1):11508.
               2021;13:035001.                                    doi: 10.1063/5.0034901.
               doi: 10.1088/1758-5090/abdb86.
                                                               16.  Wang X, Jiang J, Yuan C, et al. 3D bioprinting of GelMA with
            5.   Zhao Z, Xiang Y, Koellhoffer EC, et al. 3D bioprinting   enhanced extrusion printability through coupling sacrificial
               cowpea mosaic virus as an immunotherapy depot for   carrageenan. Biomater Sci. 2024;12(3):738-747.
               ovarian cancer prevention in a preclinical mouse model.   doi: 10.1039/D3BM01489D.
               Mater Adv. 2024;5(4):1480-1486.                 17.  Burns N, Rajesh A, Manjula-Basavanna A, Duraj-Thatte A.
               doi: 10.1039/D3MA00899A.
                                                                  3D extrusion bioprinting of microbial inks for biomedical
            6.   Weng T, Zhang W, Xia Y, et al. 3D bioprinting for skin tissue   applications. Adv Drug Deliv Rev. 2025;217:115505.
               engineering: current status and perspectives. J Tissue Eng.   doi: 10.1016/j.addr.2024.115505.
               2021;12:1758518878.                             18.  Iyer KS, Bao L, Zhai J, et al. Microgel-based bioink for
               doi: 10.1177/20417314211028574.                    extrusion-based 3D bioprinting and its applications in tissue
            7.   Ng WL, An J, Chua CK. Process, material, and regulatory   engineering. Bioact Mater. 2025;48:273-293.
               considerations  for  3D  printed  medical  devices  and  tissue   doi: 10.1016/j.bioactmat.2025.02.003.
               constructs. Engineering. 2024;36:146-166.       19.  Yuce-Erarslan E, Tutar R, Izbudak B, et al.  Photo-
               doi: 10.1016/j.eng.2024.01.028.                    crosslinkable chitosan and gelatin-based nanohybrid
            8.   Namazi AM, Aghajanzadeh MS, Imani R. Optimizing a self-  bioinks for extrusion-based 3D-bioprinting.  Int J Polym
               healing gelatin/aldehyde-modified xanthan gum hydrogel   Mater. 2021;72(1):1-12.
               for extrusion-based 3D printing in biomedical applications.   doi: 10.1080/00914037.2021.1981322.
               Mater Today Chem. 2024;40:102208.               20.  Lima TDPL, Canelas CADA, Concha VOC, Costa FAMD,
               doi: 10.1016/j.mtchem.2024.102208.                 Passos MF. 3D bioprinting technology and hydrogels used
            9.   Ijeoma P, Ridel AF, Parkar H. Digital protocol for the   in the process. J Funct Biomater. 2022;13(4):214.
               bioprinting of a three-dimensional acellular dermal scaffold.   doi: 10.3390/jfb13040214.
               Biomedical visualization. In:  How to use 3D Printing   21.  Shie M, Shen Y, Astuti SD, et al. Review of polymeric
               Innovations and Digital Storage to Democratize Anatomy   materials in 4D printing biomedical applications. Polymers.
               Education.  Biomedical Visualization, Springer, Cham.   2019;11(11):1864.
               2024:99-113.                                       doi: 10.3390/polym11111864.
               doi: 10.1007/978-3-031-68501-9_5.
                                                               22.  Chang CC, Boland ED, Williams SK, Hoying JB. Direct‐
            10.  Li W, Wang M, Ma H, Chapa-Villarreal FA, Lobo AO, Zhang   write bioprinting three‐dimensional biohybrid systems for
               YS. Stereolithography apparatus and digital light processing-  future regenerative therapies.  J Biomed Mater Res B Appl
               based 3D bioprinting for tissue fabrication.  iScience.   Biomater. 2011;98B(1):160-170.
               2023;26(2):106039.                                 doi: 10.1002/jbm.b.31831.
               doi: 10.1016/j.isci.2023.106039.
                                                               23.  Lv C, Sun X, Xia H, et al. Humidity-responsive actuation
            11.  Liu J, Xu C. Improving uniformity of cell distribution   of programmable hydrogel microstructures based on 3D
               in  post-inkjet-based  bioprinting.  J  Manuf  Sci  Eng.   printing. Sens Actuators B Chem. 2018;259:736-744.
               2024;146(1):014501.                                doi: 10.1016/j.snb.2017.12.053.


            Volume 11 Issue 4 (2025)                       424                            doi: 10.36922/IJB025220222
   427   428   429   430   431   432   433   434   435   436   437