Page 433 - v11i4
P. 433

International Journal of Bioprinting                                 Swelling–shrinking behavior of hydrogel




            24.  Dai C, Li Z, Li Z, et al. Direct‐printing hydrogel‐based   34.  Cubo N, Garcia M, Del CJ, Velasco D, Jorcano JL. 3D
               platform for humidity‐driven dynamic full‐color printing   bioprinting of functional human skin: production and in
               and holography. Adv Funct Mater. 2023;33(9):2212053.  vivo analysis. Biofabrication. 2016;9:15006.
               doi: 10.1002/adfm.202212053.                       doi: 10.1088/1758-5090/9/1/015006.
            25.  Sun S, Xu Y, Maimaitiyiming X. 3D printed carbon   35.  Cahn JW, Hilliard JE. Free energy of a nonuniform system.
               nanotube/polyaniline/gelatin flexible NH3, stress, strain,   I. Interfacial free energy and free energy of a nonuniform
               temperature  multifunctional  sensor.  React Funct Polym.   system. III. Nucleation in a two‐component incompressible
               2023;190:105625.                                   fluid. J Chem Phys. 1959;31:688-699.
               doi: 10.1016/j.reactfunctpolym.2023.105625.        doi: 10.1002/9781118788295.ch3.
            26.  Yu K, Gao Q, Lu L, Zhang P. A process parameter design   36.  Gao Q, Lu L, Zhang R, Song L, Huo D, Wang G. Investigation
               method for improving the filament diameter accuracy of   on the thermal behavior of an aerostatic spindle system
               extrusion 3D printing. Materials. 2022;15(7):2454.  considering multi-physics coupling effect. Int J Adv Manuf
               doi: 10.3390/ma15072454.                           Technol. 2019;102:3813-3823.
            27.  Zhao L, Wang P, Tian J, et al. A novel composite hydrogel   doi: 10.1007/s00170-019-03509-4.
               for solar evaporation enhancement at air-water interface. Sci   37.  Fick A. On liquid diffusion. J Membr Sci. 1995;100(1):33-38.
               Total Environ. 2019;668:153-160.                   doi: 10.1016/0376-7388(94)00230-V.
               doi: 10.1016/j.scitotenv.2019.02.407.
                                                               38.  Shu S, Zhan Z, Xu J, Huang Y, Huang W, Lin Y. Three-
            28.  Park JH, Jang J, Lee J, Cho D. Current advances in three-  dimensional numerical simulation and experiment of
               dimensional tissue/organ printing. Tissue Eng Regen Med.   moisture condensation mechanism inside high voltage
               2016;13:612-621.                                   switchgear. Int J Electr Power Energy Syst. 2023;151:109129.
               doi: 10.1007/s13770-016-8111-8.
                                                                  doi: 10.1016/j.ijepes.2023.109129.
            29.  Search J, Mahjoubnia A, Chen AC, et al. 3D-printing of
               selectively porous, freestanding structures via humidity-  39.  Naghieh S, Chen X. Printability–a key issue in extrusion-
               induced rapid phase change. Addit Manuf. 2023;68:103514.  based bioprinting. J Pharm Anal. 2021;11(5):564-579.
               doi: 10.1016/j.addma.2023.103514.                  doi: 10.1016/j.jpha.2021.02.001.
                                                               40.  Schwab A, Levato R, D Este M, Piluso S, Eglin D, Malda J.
            30.  Matamoros M, Gómez-Blanco JC, Sánchez ÁJ, et
               al.  Temperature and humidity PID controller for a   Printability and shape fidelity of bioinks in 3D bioprinting.
               bioprinter atmospheric enclosure system.  Micromachines.   Chem Rev. 2020;120(19):11028-11055.
               2020;11(11):999.                                   doi: 10.1021/acs.chemrev.0c00084.
               doi: 10.3390/mi11110999.                        41.  Lee J, Kim G. Three-dimensional hierarchical nanofibrous
            31.  Yu K, Gao Q, Yao Y, Lin Z, Zhang P, Lu L. Investigation of   collagen scaffold fabricated using fibrillated collagen and
               the humidity control in the printing space for the material   pluronic F-127 for regenerating bone tissue. ACS Appl Mater
               extrusion of medical biodegradable hydrogel. Addit Manuf.   Interfaces. 2018;10(42):35801-35811.
               2024;93:104452.                                    doi: 10.1021/acsami.8b14088.
               doi: 10.1016/j.addma.2024.104452.               42.  Boonlai W, Hirun N, Suknuntha K, Tantishaiyakul V.
            32.  Yu K, Gao Q, Xu J, et al. Computational investigation of a   Development and characterization of pluronic F127 and
               3D-printed skin substitute with orthotropy in mechanical   methylcellulose based hydrogels for 3D bioprinting. Polym
               property. Comput Biol Med. 2023;166:107536.        Bull. 2023;80:4555-4572.
               doi: 10.1016/j.compbiomed.2023.107536.             doi: 10.1007/s00289-022-04271-6.
            33.  Scotti C, Wirz D, Wolf F, et al. Engineering human cell-  43.  Fu Z, Angeline V, Sun W. Evaluation of printing parameters
               based, functionally integrated osteochondral grafts by   on 3D extrusion printing of pluronic hydrogels and machine
               biological bonding of engineered cartilage tissues to bony   learning guided parameter recommendation. Int J Bioprint.
               scaffolds. Biomaterials. 2010;31(8):2252-2259.     2021;7(4):434.
               doi: 10.1016/j.biomaterials.2009.11.110.           doi: 10.18063/ijb.v7i4.434.















            Volume 11 Issue 4 (2025)                       425                            doi: 10.36922/IJB025220222
   428   429   430   431   432   433   434   435   436   437   438