Page 107 - IJOCTA-15-1
P. 107
On a robust stability criterion in the Cattaneo–Hristov diffusion equation
[6] Khajanchi S., Sardar M. & Nieto J. (2023). Ap- Frontiers in fractional calculus. Bentham Science
plication of non-singular kernel in a tumor model Publishers, Sharjah, 269–341.
with strong allee effect. Differential Equations [17] Hristov J. (2019). Response functions in lin-
and Dynamical Systems 31(1), 687–692. https: ear viscoelastic constitutive equations and
//doi.org/10.1007/s12591-022-00622-x related fractional operators. Mathematical
[7] Sehra, H. Sadia, S. Haq, H. Alhazmi, I. Khan Modelling of Natural Phenomena 14(3), 305.
& Niazai S. (2004). A comparative analysis of https://doi.org/10.1051/mmnp/2018067
three distinct fractional derivatives for a second [18] Hristov J. (2023). Constitutive fractional
grade fluid with heat generation and chemical modeling. Mathematical Modelling: Prin-
reaction. Scientific Reports 14(1), 4482. https: ciple And Theory. 786, 37–140. h t t p s :
//doi.org/10.1038/s41598-024-55059-9 //doi.org/10.1090/conm/786/15795
[8] Caputo M. & Fabrizio M. (2015). A new defini- [19] Hristov J. (2023). The fading memory formalism
tion of fractional derivative without singular ker- with Mittag–Leffler-type kernels as a generator
nel. Progress in Fractional Differentiation & Ap- of non-local operators. Applied Sciences 13(5),
plications 1(2), 73–85. 3065. https://doi.org/10.3390/app13053065
[9] Atangana A. & Baleanu D. (2016). New frac- [20] Koka I. & Atangana A. (2017). Solu-
tional derivatives with nonlocal and non-singular tions of Cattaneo–Hristov model of elas-
kernel: Theory and application to heat transfer tic heat diffusion with Caputo–Fabrizio
model. Thermal Science 20(2), 763–769. https: and Atangana–Baleanu fractional deriva-
//doi.org/10.2298/TSCI160111018A tives. Thermal Science 21(6A), 2299–2305.
[10] Tateishi A., Ribeiro H. & Lenzi E. (2017). The https://doi.org/10.2298/TSCI160209103K
role of fractional time-derivative operators on [21] Sene N. (2019). Solutions of fractional diffu-
anomalous diffusion. Frontiers in Physics 5, 52. sion equations and Cattaneo–Hristov diffusion
https://doi.org/10.3389/fphy.2017.00052 model. International Journal of Analysis
[11] Vivas-Cruz L., Gonz´alez-Calder´on A., Taneco- and Applications 17(2), 191–207. h t t p s :
Hern´andez M. & Luis D. (2020). Theoretical anal- //doi.org/10.28924/2291-8639-17-2019-191
˙
ysis of a model of fluid flow in a reservoir with [22] Avcı D. & Ero˘glu B. B. I. (2021) Optimal control
the Caputo–Fabrizio operator. Communications of the Cattaneo–Hristov heat diffusion model.
in Nonlinear Science and Numerical Simulation Acta Mechanica 232(9) 3529–3538. h t t p s :
84, 105186. https://doi.org/10.1016/j.cnsn //doi.org/10.1007/s00707-021-03019-z
˙
s.2020.105186 [23] Ero˘glu B. B. I. & Avcı D. (2021). Separa-
[12] Sene N. & Ndiaye A. (2024). Existence and ble solutions of Cattaneo–Hristov heat dif-
uniqueness study for partial neutral functional fusion equation in a line segment: Cauchy
fractional differential equation under Caputo and source problems. Alexandria Engi-
derivative. An International Journal of Opti- neering Journal 60(2), 2347–2353. h t t p s :
mization and Control: Theories & Applications //doi.org/10.1016/j.aej.2020.12.018
(IJOCTA), 14(3), 208–219. https://doi.org/ [24] Singh Y., Kumar D., Modi K. & Gill V. (2020). A
10.11121/ijocta.1464 new approach to solve Cattaneo–Hristov diffusion
[13] Hristov J. (2013). A note on the integral approach model and fractional diffusion equations with
to non-linear heat conduction with Jeffrey’s fad- Hilfer–Prabhakar derivative. AIMS Mathematics
ing memory. Thermal Science, 17(3), 733–737. 5(2), 843–855.
˙
https://doi.org/10.2298/TSCI120826076H [25] Ero˘glu B. B. I. (2023). Two-dimensional
[14] Hristov J. (2016). Transient heat diffusion Cattaneo–Hristov heat diffusion in the half-
with a non-singular fading memory: From the plane. Mathematical Modelling and Numerical
Cattaneo constitutive equation with Jeffrey’s Simulation with Applications. 3(3), 281–296.
Kernel to the Caputo–Fabrizio time-fractional https://doi.org/10.53391/mmnsa.1340302
derivative. Thermal Science, 20(1), 757–762. [26] Elsgolts L. (1997). Differential equations and the
https://doi.org/10.2298/TSCI160112019H calculus of variations, Mir, Moscow.
[15] Hristov J. (2017). Steady-state heat con- [27] Brezis H. (2011). Functional analysis,
duction in a medium with spatial non- Sobolev spaces and partial differential
singular fading memory: derivation of equations, Springer, New York. h t t p s :
Caputo–Fabrizio space-fractional derivative //doi.org/10.1007/978-0-387-70914-7
with Jeffrey’s kernel and analytical so-
[28] Kilbas A., Srivastava H. & Trujillo J. (2006).
lutions. Thermal Science, 21(2), 827–839.
Theory and applications of fractional differential
https://doi.org/10.2298/TSCI160229115H
equations, Elsevier Science Inc., USA.
[16] Hristov J. (2018). Derivatives with non-singular
kernels from the Caputo–Fabrizio definition [29] Losada J. & Nieto J. (2015). Properties of
and beyond: Appraising analysis with emphasis a new fractional derivative without singular
on diffusion models. In: Sachin Bhalekar, ed. kernel. Progress in Fractional Differentiation &
Current developments in mathematical sciences. Applications 1(2), 87–92.
101

