Page 108 - IJOCTA-15-1
P. 108

´
                      R. Temoltzi-Avila, J. Temoltzi-Avila / IJOCTA, Vol.15, No.1, pp.92-102 (2025)
                                                                                             ´
            [30] Atanackovi´c T, Pilipovi´c S. & Zorica D. (2018).  [34] Zhermolenko V. & Temoltzi-Avila R. (2021).
                Properties of the Caputo–Fabrizio fractional de-  Bulgakov  problem  for  a  hyperbolic  equa-
                rivative and its distributional settings. Fractional  tion and robust stability. Moscow University
                Calculus and Applied Analysis 21(1), 29–44.       Mechanics Bulletin 76(4), 95–104. h t t p s :
                https://doi.org/10.1515/fca-2018-0003             //doi.org/10.3103/S0027133021040051
            [31] Al-Refai  M.  &  Pal  K.  (2019).  New  as-
                pects   of  Caputo–Fabrizio  fractional  de-
                rivative.  Progress  in   Fractional  Differ-                ´
                                                              Ra´ul Temoltzi Avila is a professor-reseracher in the
                entiation  &   Applications  5(2),  157–166.
                                                              Academic Area of Mathematics and Physics at the Au-
                https://doi.org/10.18576/pfda/050206
                                                              tonomous University of the State of Hidalgo, Hidalgo,
            [32] Nchama G. (2020). Properties of Caputo–
                                                              Mexico.
                Fabrizio  fractional  operators.  New  Trends
                                                                 https://orcid.org/0000-0003-4462-2197
                in   Mathematical   Sciences   8(1),   1–25.
                https://doi.org/10.20852/ntmsci.2020.393
            [33] Losada J. & Nieto J. (2021). Fractional inte-  Javier Temoltzi Avila is a professor-researcher
                gral associated to fractional derivatives with  in the Electrical and Electronic Industrial Area at
                nonsingular  kernels.  Progress  in  Fractional  the Technological University of Northern Guanajuato,
                Differentiation & Applications 7(3), 137–143.  Guanajuato, Mexico.
                https://doi.org/10.18576/pfda/070301             https://orcid.org/0009-0000-0313-6841




                            An International Journal of Optimization and Control: Theories & Applications
                                             (https://accscience.com/journal/ijocta)









            This work is licensed under a Creative Commons Attribution 4.0 International License. The authors retain ownership of
            the copyright for their article, but they allow anyone to download, reuse, reprint, modify, distribute, and/or copy articles
            in IJOCTA, so long as the original authors and source are credited. To see the complete license contents, please visit
            http://creativecommons.org/licenses/by/4.0/.









































                                                           102
   103   104   105   106   107   108   109   110   111   112   113