Page 127 - IJOCTA-15-1
P. 127

Exponential stability for higher-order impulsive fractional neutral stochastic integro-delay . . .


            [19] Debbouche, A., & Nieto, J.J. (2015). Relax-      Advances in Difference Equations, 112, 1-13. ht
                ation in controlled systems described by fractional  tps://doi.org/10.1186/1687-1847-2014-112
                integro-differential equations with nonlocal con-  [32] Arthi, G., Park, J.H., & Yung, H.Y. (2015). Expo-
                trol conditions. Electronic Journal of Differential  nential stability for second-order neutral stochas-
                Equations,(89), 1-18.                             tic differential equations with impulses. Interna-
            [20] Huan, D.D., & Gao, H. (2015). Controllability of  tional Journal of Control, 88, 1300-1309. https:
                nonlocal second-order impulsive neutral stochas-  //doi.org/10.1080/00207179.2015.1006683
                tic functional integro-differential equations with  [33] Chen, H. (2010). Impulsive-integral inequality
                delay and Poisson jumps. Cogent Engineering, 2,   and exponential stability for stochastic partial
                1-16. https://doi.org/10.1080/23311916.201        differential equations with delays. Statistics and
                5.1065585                                         Probability Letters, 80, 50-56. https://doi.org/
            [21] Muthukumar, P., & Rajivganthi, C. (2013). Ap-    10.1016/j.spl.2009.09.011
                proximate controllability of fractional order neu-  [34] Dhanalakshmi, K., & Balasubramaniam, P.
                tral stochastic integro-differential systems with  (2023). Ulam-Hyers stability for second-order
                nonlocal conditions on infinite delay. Taiwanese  non-instantaneous impulsive fractional neutral
                Journal of Mathematics, 17, 1693-1713. https:     stochastic differential equations. Journal of Math-
                //doi.org/10.11650/tjm.17.2013.2743               ematical Physics, 64 (4), 042702.
            [22] Revathi, P., Sakthivel, R., Song, D-Y., Ren, Y.,  [35] Dhanalakshmi, K., & Balasubramaniam, P.
                & Zhang, P. (2017). Existence and stability re-   (2023). Well posedness of second-order non-
                sults for second-order stochastic equations driven  instantaneous impulsive fractional neutral sto-
                by fBm. Transport Theory and Statistical Physics,  chastic differential equations. Bulletin des Sci-
                42, 299-317. https://doi.org/10.1080/004114       ences Math´ematiques, 189, 103350.
                50.2014.910813                                [36] Kilbas, A.A., Srivastava, H.M., & Trujillo, J.J.
            [23] Li, Q., Zhou, Y., & Zhao, X. (2014). Fractional  (2006). Theory and applications of fractional dif-
                order stochastic differential equation with appli-  ferential equations. North-Holland Mathematics
                cation in European option pricing. Discrete Dy-   Studies. Elsevier, Amsterdam.
                namics in Nature and Society, 7, 1-12. https:  [37] Lakshmikantham, V., Leela, S., & Vasundhara
                //doi.org/10.1155/2014/621895                     Devi, J. (2009). Theory of fractional dynamic
            [24] Hale, J.K., Sjoerd, M., & Verduyn, L. (1993).    systems. Cambridge Scientific Publishers, United
                Introduction to functional differential equations.  Kingdom.
                Springer-Verlag, New York.                    [38] Miller, K.S., & Ross, B. (1993). An Introduction
            [25] Chadha, A. (2018). Exponential stability for neu-  to the fractional calculus and differential equation.
                tral stochastic partial integro-differential equa-  John Willey, New York.
                tions of second order with Poisson jumps. Filo-  [39] Pazy, A. (1983). Semigroups of linear operator
                mat, 32, 5173-5190. https://doi.org/10.2298/      and applications to partial differential equations.
                FIL1815173C                                       Springer, Berlin.
            [26] Jiang, F., Yang, H., & Shen, Y. (2020). A note  [40] Travis, C.C., & Webb, G.F. (1978). Cosine fami-
                on exponential stability for second-order neutral  lies and abstract nonlinear second order differen-
                stochastic partial differential equations with infi-  tial equation. Acta Mathematica. Academiae Sci-
                nite delays in the presence of impulses. Applied  entiarum Hungarica, 32, 76-96. https://doi.or
                Mathematics and Computation, 125-133.             g/10.1007/BF01902205
            [27] Dhayal, R., Malik, M., Abbas, S., & Debbouche,  [41] Travis, C.C., & Webb, G.F. (1977). Compact-
                A. (2020). Optimal controls for second-order sto-  ness, regularity, and uniform continuity proper-
                chastic differential equations driven by mixed-   ties of strongly continuous cosine families. Hous-
                fractional Brownian motion with impulses. Math-   ton Journal of Mathematics, 3, 555-567.
                ematical Methods in the Applied Sciences, 43(7),  [42] Travis, C.C., & Webb, G.F. (1987). Second or-
                4107-4124. https://doi.org/10.1002/mma.61         der differential equations in Banach spaces. In
                77                                                proceedings international symposium on nonlinear
            [28] Lakshmikantham,V., Bainov, D.D., & Simeonov,     equation in abstract spaces. New York: Academic
                P.S.(1989). Theory of impulsive differential equa-  Press, 331-361.
                tions. World Scientific, Singapore. https://doi.  [43] Granas, A., & Dugundji, J. (2003). Fixed point
                org/10.1142/0906                                  theory. Springer-Verlag, New York. https://do
            [29] Samoilenko, A.M., & Perestyuk, N.A. (1995).      i.org/10.1007/978-0-387-21593-8
                Impulsive differential equations. World Scientific  [44] Hale, J.K., & Kato, J. (1978). Phase space for
                Publishers, Singapore. https://doi.org/10.1       retarded equations with infinite delay. Funckcial.
                142/9789812798664                                 Ekvac, 21, 11-41.
            [30] Stamova, I. (2016) Applied impulsive mathemat-  [45] Hino, Y., Murakami, S., & Naito, T. (1991).
                ical models. Springer, International publishing,  Functional differential equations with infinite
                Switzerland.                                      delay:Lecture notes in mathematics. Springer,
            [31] Yue, C. (2014). Second-order neutral impulsive   Berlin, Heidelberg.
                stochastic evolution equation with infinite delay.
                                                           121
   122   123   124   125   126   127   128   129   130   131   132