Page 131 - IJOCTA-15-1
P. 131

Duality for robust multi-dimensional vector variational control problem under invexity
                                     Table 1. Author’s contribution in this field of study

                         Author(s)      Variational Robustness Multiobjective Multi-Dimensional
                         Mititelu 21         ×           ×              ×                ✓
                         Gulati and          ✓           ×              ✓                ×
                       Mehndiratta 22
                       Sachdev et al. 23     ✓           ×              ✓                ×
                        Singh et al. 24      ✓           ×              ✓                ×
                       Dubey et al. 25       ✓           ×              ✓                ×
                       Jayswal et al. 26     ×           ✓              ×                ✓
                      Baranwal et al. 27     ×           ✓              ×                ✓
                        Antczak and
                         Treant¸˘a 28        ✓           ×              ×                ✓
                       Pokharna and          ✓           ×              ✓                ×
                         Tripathi 29
                       Nguyen et al. 30      ×           ✓              ×                ✓
                         Saeed and           ×           ✓              ✓                ✓
                         Treant¸˘a 31
                        Bagri et al. 32      ✓           ✓              ×                ✓
                       Jayswal et al. 33     ✓           ✓              ×                ✓
                         This paper          ✓           ✓              ✓                ✓


                                                              and folllowing holds
                                                        !
                                                                  Z                 Z
             Z                       Z
                                                                                         ˆ
                max Ψ 1 (Λ, a 1 )dν, ...,  max Ψ p (Λ, a p )dν       ψ(Λ, σ κ , r)dν −  ψ(Λ, ˆσ κ , r)dν (>)≧
                                        a
                a
               Ω 1 ∈A 1               Ω p∈A p                      Ω                 Ω
                                                                   Z
                                                                                              ˆ
                               subject to                             η(t, σ, ˆσ, σ κ , ˆσ κ , ω, ˆω)ψ σ (Λ, ˆσ κ , r)dν
                                                                    Ω
                         θ(Λ, σ κ (t), b)≦0, b∈B                  Z
                                                                                                 ˆ
                                                                 +                              (Λ, ˆσ κ r)dν
                        β(Λ, σ κ (t), µ)=0, µ∈M                      D κ η(t, σ, ˆσ, σ κ , ˆσ κ , ω, ˆω)ψ σ κ
                                                                    Ω
                       t∈Ω, σ(t 0 )=δ 0 , σ(t 1 )=δ 1 .             Z
                                                                                              ˆ
                                                                  +   ξ(t, σ, ˆσ, σ κ , ˆσ κ , ω, ˆω)ψ ω (Λ, ˆσ κ , r)dν,
                                                                     Ω
                                                              ∀(σ, ω) ∈K ×Υ.
            Thus, the set of feasible solutions for (RUVP) will                            Z
            be                                                Definition 3. A functional     ψ(Λ, σ κ , r)dν is
                                                                                            Ω
                                                              defined as (strictly) pseudo-invex at (ˆσ, ˆω)∈K ×
               T ={(σ, ω)∈K ×Υ : θ(Λ, σ κ (t), b)≦0,          Υ if there exist η and ξ with η =0 if σ(t)= ˆσ(t)
                                                              such that
              β(Λ, σ κ (t), µ)=0, σ(t 0 )=δ 0 , σ(t 1 )=δ 1 , t∈Ω,  Z
                                                                                              ˆ
                             b∈B, µ∈M }.                              η(t, σ, ˆσ, σ κ , ˆσ κ , ω, ˆω)ψ σ (Λ, ˆσ κ , r)dν
                                                                    Ω
            Definition 1. A feasible point (¯σ, ¯ω)∈T is de-      Z
                                                                                                 ˆ
            fined as the robust weak efficient solution for      +   D κ η(t, σ, ˆσ, σ κ , ˆσ κ , ω, ˆω)ψ σ κ (Λ, ˆσ κ r)dν
                                                                    Ω
            (RUVP) iff ∄ any (σ, ω)∈T such that                 Z
                                                                                           ˆ
                 Z                  Z                        +    ξ(t, σ, ˆσ, σ κ , ˆσ κ , ω, ˆω)ψ ω (Λ, ˆσ κ , r)dν(>)≧0,
                                               ¯
                    maxΨ(Λ, a)dν <     maxΨ Λ, a dν.             Ω Z                Z
                   Ω  a∈A             Ω  a∈A
                                                                                         ˆ
                                                                ⇒    ψ(Λ, σ κ , r)dν −  ψ(Λ, ˆσ κ , r)dν (>)≧0,
            For     ψ ∈R, η(t,σ,ˆσ,σ κ , ˆσ κ , ω, ˆω)∈R q  and    Ω                 Ω
                                    r
            ξ(t, σ, ˆσ, σ κ , ˆσ κ , ω, ˆω)∈R , some definitions are     ∀(σ, ω)∈K ×Υ.
            presented which are extended on the lines of 20                                Z
            over uncertain parameter r:                       Definition 4. A functional     ψ(Λ, σ κ , r)dν is
                                                                                            Ω
                                                              defined as quasi-invex at (ˆσ, ˆω)∈K ×Υ if there
                                         Z
            Definition 2. A functional      ψ(Λ, σ κ , r)dν is  exists η and ξ with η =0 for σ(t)= ˆσ(t) and
                                          Ω
                                                                   Z                Z
            defined as  (strictly) invex at (ˆσ, ˆω)∈K ×Υ if
                                                                                         ˆ
                                                                     ψ(Λ, σ κ , r)dν −  ψ(Λ, ˆσ κ , r)dν ≦0,
            there exist η and ξ such that η =0 if σ(t)= ˆσ(t)
                                                                    Ω                Ω
                                                           125
   126   127   128   129   130   131   132   133   134   135   136