Page 126 - IJOCTA-15-1
P. 126
D. Kasinathan et.al. / IJOCTA, Vol.15, No.1, pp.103-122 (2025)
used to simulate the obtained result in the future [6] Kumar, V., Malik, M., & Debbouche, A. (2021).
with the real-life applications. Stability and controllability analysis of frac-
tional damped differential system with non-
Acknowledgments instantaneous impulses. Applied Mathematics and
Computation, 391, 125633. https://doi.org/10
None. .1016/j.amc.2020.125633
[7] Tun¸c, C., Tun¸c, O., Wang, Y., & Yao, J.C. (2021).
Funding Qualitative analyses of differential systems with
time-varying delays via Lyapunov-Krasovski˘ı ap-
None.
proach. Mathematics, 9(11), 1196. https://doi.
org/10.3390/math9111196
Conflict of interest
[8] Tun¸c, O. (2021). On the behaviors of solutions
The authors declare that they have no conflict of of systems of non-linear differential equations
with multiple constant delays. Revista de la Real
interest regarding the publication of this article.
Academia de Ciencias Exactas, Fisicas y Natu-
Author contributions rales. Serie A. Matematicas, 115(4), 164. https:
//doi.org/10.1007/s13398-021-01104-5
Conceptualization: Dhanalakshmi Kasinathan, [9] Da Prato, G., & Zabczyk, J. (1992). Stochastic
Dimplekumar Chalishajar equations in infinite dimensions. Cambridge Uni-
Formal analysis: Ramkumar Kasinathan, versity Press, Cambridge. https://doi.org/10
Ravikumar Kasinathan .1017/CBO9780511666223
[10] Da Prato, G., & Zabczyk, J. (2002). Second-order
Methodology: Dhanalakshmi Kasinathan, Dim-
partial differential equations in Hilbert spaces.
plekumar Chalishajar
Cambridge University Press, Cambridge. https:
Writing – original draft: Dhanalakshmi Kasi-
//doi.org/10.1017/CBO9780511543210
nathan
[11] Gikhman, L. (2007). The theory of stochastic
Writing – review & editing: Ramkumar Kasi- processes III. Springer-Verlag, Berlin Heidelberg,
nathan, Ravikumar Kasinathan, Dimplekumar Switzerland. https://doi.org/10.1007/978-3
Chalishajar -540-49941-1
[12] Mao, X. (1997). Stochastic differential equations
Availability of data and applications, Horwood, Chichester.
[13] Mishura, Y. (2008). Stochastic calculus for frac-
Not applicable.
tional Brownian motion and related processes.
Lecture notes in mathematics-1929, Springer,
References
Berlin, Heidelberg. https://doi.org/10.100
[1] Bohner, M., & Tun¸c, O. (2022). Qualitative anal- 7/978-3-540-75873-0
ysis of integro-differential equations with variable [14] Oksendal, B. (2003). Stochastic differential
retardation. Discrete & Continuous Dynamical equations: An introduction with applications.
Systems-Series B, 27(2). https://doi.org/10 Springer-Verlag, Heidelberg, New York.
.3934/dcdsb.2021059 [15] Protter, P.E. (2004). Stochastic integration and
[2] Bohner, M., Tun¸c, O., & Korkmaz, E. (2023). differential equations (2 nd ed.). Springer, New
On the fundamental qualitative properties of York.
integro-delay differential equations. Communica- [16] Fitzgibbon, W.E. (1981). Strongly Damped
tions in Nonlinear Science and Numerical Simu- Quasilinear Evolution Equations. Journal of
lation, 125, 107320. https://doi.org/10.1016/ Mathematical Analysis and Applications, 79, 536-
j.cnsns.2023.107320 550. https://doi.org/10.1016/0022-247X(81
[3] Samko, S.G., Kilbas, A.A., & Marichev, O.I. )90043-3
(1997). Fractional integrals and derivatives : The- [17] Caraballo, T., Ogouyandjou, C., Allognissode,
ory and applications. Gordon and Breach Science F.K., & Diop, M.A. (2020). Existence and ex-
publisher, Switzerland. ponential stability for neutral stochastic integro-
[4] Tun¸c, C., & Tun¸c, O. (2018), On behaviours differential equations with impulses driven by a
of functional Volterra integro-differential equa- Rosenblatt process. American Institute of Mathe-
tions with multiple time lags. Journal of Taibah matical Sciences, 2, 507-528. https://doi.org/
University for Science, 12(2), 173-179. https: 10.3934/dcdsb.2019251
//doi.org/10.1080/16583655.2018.1451117 [18] Byszewski, L., & Lakshmikantham, V. (1990).
[5] Hakkar, N., Dhayal, R., Debbouche, A., & Tor- Theorem about the existence and uniqueness of
res, D.F. (2023). Approximate controllability of a solution of a nonlocal abstract Cauchy problem
delayed fractional stochastic differential systems in a Banach space. Applicable analysis, 40(1), 11-
with mixed noise and impulsive effects. Fractal 19. https://doi.org/10.1080/000368190088
and Fractional, 7(2), 104. https://doi.org/10 39989
.3390/fractalfract7020104
120

