Page 126 - IJOCTA-15-1
P. 126

D. Kasinathan et.al. / IJOCTA, Vol.15, No.1, pp.103-122 (2025)

            used to simulate the obtained result in the future  [6] Kumar, V., Malik, M., & Debbouche, A. (2021).
            with the real-life applications.                      Stability and controllability analysis of frac-
                                                                  tional damped differential system with non-
            Acknowledgments                                       instantaneous impulses. Applied Mathematics and
                                                                  Computation, 391, 125633. https://doi.org/10
            None.                                                 .1016/j.amc.2020.125633
                                                               [7] Tun¸c, C., Tun¸c, O., Wang, Y., & Yao, J.C. (2021).
            Funding                                               Qualitative analyses of differential systems with
                                                                  time-varying delays via Lyapunov-Krasovski˘ı ap-
            None.
                                                                  proach. Mathematics, 9(11), 1196. https://doi.
                                                                  org/10.3390/math9111196
            Conflict of interest
                                                               [8] Tun¸c, O. (2021). On the behaviors of solutions
            The authors declare that they have no conflict of     of systems of non-linear differential equations
                                                                  with multiple constant delays. Revista de la Real
            interest regarding the publication of this article.
                                                                  Academia de Ciencias Exactas, Fisicas y Natu-
            Author contributions                                  rales. Serie A. Matematicas, 115(4), 164. https:
                                                                  //doi.org/10.1007/s13398-021-01104-5
            Conceptualization:  Dhanalakshmi Kasinathan,       [9] Da Prato, G., & Zabczyk, J. (1992). Stochastic
            Dimplekumar Chalishajar                               equations in infinite dimensions. Cambridge Uni-
            Formal    analysis:   Ramkumar      Kasinathan,       versity Press, Cambridge. https://doi.org/10
            Ravikumar Kasinathan                                  .1017/CBO9780511666223
                                                              [10] Da Prato, G., & Zabczyk, J. (2002). Second-order
            Methodology: Dhanalakshmi Kasinathan, Dim-
                                                                  partial differential equations in Hilbert spaces.
            plekumar Chalishajar
                                                                  Cambridge University Press, Cambridge. https:
            Writing – original draft: Dhanalakshmi Kasi-
                                                                  //doi.org/10.1017/CBO9780511543210
            nathan
                                                              [11] Gikhman, L. (2007). The theory of stochastic
            Writing – review & editing: Ramkumar Kasi-            processes III. Springer-Verlag, Berlin Heidelberg,
            nathan, Ravikumar Kasinathan, Dimplekumar             Switzerland. https://doi.org/10.1007/978-3
            Chalishajar                                           -540-49941-1
                                                              [12] Mao, X. (1997). Stochastic differential equations
            Availability of data                                  and applications, Horwood, Chichester.
                                                              [13] Mishura, Y. (2008). Stochastic calculus for frac-
            Not applicable.
                                                                  tional Brownian motion and related processes.
                                                                  Lecture notes in mathematics-1929, Springer,
            References
                                                                  Berlin, Heidelberg. https://doi.org/10.100
             [1] Bohner, M., & Tun¸c, O. (2022). Qualitative anal-  7/978-3-540-75873-0
                ysis of integro-differential equations with variable  [14] Oksendal,  B. (2003). Stochastic differential
                retardation. Discrete & Continuous Dynamical      equations:  An introduction with applications.
                Systems-Series B, 27(2). https://doi.org/10       Springer-Verlag, Heidelberg, New York.
                .3934/dcdsb.2021059                           [15] Protter, P.E. (2004). Stochastic integration and
             [2] Bohner, M., Tun¸c, O., & Korkmaz, E. (2023).     differential equations (2 nd ed.). Springer, New
                On the fundamental qualitative properties of      York.
                integro-delay differential equations. Communica-  [16] Fitzgibbon,  W.E. (1981). Strongly Damped
                tions in Nonlinear Science and Numerical Simu-    Quasilinear Evolution Equations. Journal of
                lation, 125, 107320. https://doi.org/10.1016/     Mathematical Analysis and Applications, 79, 536-
                j.cnsns.2023.107320                               550. https://doi.org/10.1016/0022-247X(81
             [3] Samko, S.G., Kilbas, A.A., & Marichev, O.I.      )90043-3
                (1997). Fractional integrals and derivatives : The-  [17] Caraballo, T., Ogouyandjou, C., Allognissode,
                ory and applications. Gordon and Breach Science   F.K., & Diop, M.A. (2020). Existence and ex-
                publisher, Switzerland.                           ponential stability for neutral stochastic integro-
             [4] Tun¸c, C., & Tun¸c, O. (2018), On behaviours     differential equations with impulses driven by a
                of functional Volterra integro-differential equa-  Rosenblatt process. American Institute of Mathe-
                tions with multiple time lags. Journal of Taibah  matical Sciences, 2, 507-528. https://doi.org/
                University for Science, 12(2), 173-179. https:    10.3934/dcdsb.2019251
                //doi.org/10.1080/16583655.2018.1451117       [18] Byszewski, L., & Lakshmikantham, V. (1990).
             [5] Hakkar, N., Dhayal, R., Debbouche, A., & Tor-    Theorem about the existence and uniqueness of
                res, D.F. (2023). Approximate controllability of  a solution of a nonlocal abstract Cauchy problem
                delayed fractional stochastic differential systems  in a Banach space. Applicable analysis, 40(1), 11-
                with mixed noise and impulsive effects. Fractal   19. https://doi.org/10.1080/000368190088
                and Fractional, 7(2), 104. https://doi.org/10     39989
                .3390/fractalfract7020104
                                                           120
   121   122   123   124   125   126   127   128   129   130   131