Page 121 - IJOCTA-15-1
P. 121

Exponential stability for higher-order impulsive fractional neutral stochastic integro-delay . . .

              (H 9 ) The cosine family of bounded linear oper-  Remark 1.     (1) We know that in the manu-
                    ators are {S α (ς)} ς≥0 and {T α (ς)} ς≥0 sat-   script, 34  authors studied Ulam–Hyers sta-
                    isfy the further conditions: There exist         bility for second-order non-instantaneous
                    a 1 > 0, a 2 > 0, α 1 ≥ 1, and α 2 ≥ 1 ∋         impulsive fractional neutral stochastic
                                                                     differential equations.  Also, 35  discussed
                                         p
                     p
             ∥S α (ς)∥ ≤ a 1 e −α 1 ς ; ∥T α (ς)∥ ≤ a 2 e −α 2 ς , ς ≥ 0.  the well posedness of second-order non-
                                                                     instantaneous impulsive fractional neu-
                                                                     tral stochastic differential equations. Here
                                                                     they focused on Ulam-Hyers stability via
            Lemma 5.    33  For any ω > 0, there exist α i >         impulsive Gronwall’s inequality.     We
                                                                     study the exponential stability of the sys-
            0 (i = 1, 2, 3, 4, 5, 6), b k , d k (k = 1, m), and a
                                                                     tem (1) employing impulsive integral in-
            function Π : [−r, ∞) → [0, ∞), r > 0 s.t
                                                                     equality method.
                      Π(ς) ≤ α i e −ως , ς ∈ (−∞, 0].
                                                                 (2) If the system (1) is uniformly exponen-
                                                                     tially stable, then it is Ulam-Hyers stable.
                         −σ 1 ς    −σ 2 ς
                     α 1 e   + α 2 e   ,  ς ∈ (−∞, 0]               Means Ulam-Hyers is a weaker notion of
                         −σ 1 ς    −σ 2 ς
                     α 1 e   + α 2 e   + α 3 sup Π(ς + θ)           the stability than exponential.  to make
                    
                    
                    
                                            θ∈[−r,0]                the converse of above statement is true,
                    
                          ς
                    
                           R
                             −σ 1 (ς−ϑ)                             on has to prove that the sequence of mild
                            e         sup Π(ϑ + θ)dϑ
                     +α 4
                    
                           0
                                     θ∈[−r,0]                       solution is ω-periodic.
                    
                    
                          ς
                    
                           R
                            e −σ 2 (ς−ϑ)  sup Π(ϑ + θ)dϑ
            Π(ς) ≤    +α 5                                       (3) Exponential stability is a form of asymp-
                           0          θ∈[−r,0]
                           ς
                    
                                                                    totic stability. Systems that are not lin-
                          R
                             −σ 1 (ς−ϑ)
                     +α 6   e         sup Π(ϑ + θ)dϑ
                    
                                                                    ear time invariant are exponentially stable
                          0          θ∈[−r,0]
                    
                    
                          P       −σ 1 (ς−ς k )  −                   if an exponential decay bound their con-
                     +        b k e      Π(ς )
                    
                    
                                            k                       vergence. Exponential stability is quickly
                        0<ς k <ς
                    
                         P       −σ 2 (ς−ς k )  −
                     +        d k e      Π(ς ),   ς ≥ 0.            convergent than the other stability crite-
                    
                                            k
                         0<ς k <ς                                    rion.  An asymptotically stable systems
                                                        (6)          converge to the fixed point. Asymptotic
                                                                     stability of mild solution, which are appro-
            for σ 1 , σ 2 ∈ (0, r].
                                                                     priate for continuous processes, cannot be
                                                                     applied to our system (1).
            If
                                                ∞
             α 4 + α 6   α 5            α 6    X
                     +        + α 3 +        +    (b k + d k )
             σ 1 − ω   σ 2 − ω        σ 1 − ω
                                               k=1
             < 1,                                       (7)   Theorem 2. Assume that the assumptions (H 2 )-
                                                              (H 7 ) and (H 9 ) are fulfilled and
            then
                            ˆ −ως
                    Π(ς) ≤ Me      for ς ∈ (−∞, ∞),     (8)      p−1  n         p      p  1−p   p       p
                                                                      ¯ p
                                                                8    M (1 + M ) + [a β        [L (1 + M )]
                                                                        g      σ 1     2  2     f       σ 2
                                                                    p
                                                                      ˜
                                                                + a C p β 1−  p 2 ¯  p  −p CHς pH−1 ˆ
                                                                                                   L
                                                                             L G ] + a β
                                                                    2     2          2  2
            where ω ∈ (0, σ 1 Λ σ 2 ) is a positive root of the         ∞     p      ∞      p o
                                                                      p  X   1  q    p  X    2  q
            equation                                              + a 1     L k   + a 2    L k    < 1,
                                                                        k=1             k=1
                                            ∞
             α 4 + α 6  α 5          α 6    X
                    +        +α 3 +       +    (b k +d k ) = 1.
             σ 1 − ω  σ 2 − ω      σ 1 − ω                    then the mild solution of system (1) is exponen-
                                            k=1
                                                              tially stable.
                       n         (σ 1 − ω)α 1  (σ 1 − ω)α 1
              ˆ
              M = max α 1 + α 2 ,           −            ,
                                   e −ωr  α 4   e −ωr  α 6
                        o
              (σ 2 − ω)α 2
                          > 0.
                α 5 e −ωr
                                                              Proof. Consider the mild solution
                                                           115
   116   117   118   119   120   121   122   123   124   125   126