Page 116 - IJOCTA-15-1
P. 116
D. Kasinathan et.al. / IJOCTA, Vol.15, No.1, pp.103-122 (2025)
(Φy)(ς) y τ + z τ )dτ) dϑ∥ p
0, ς ∈ J 0 ς
Z
), 0) p
S α (ς)g(0, φ + ˜p(y ς 1 , y ς 2 , . . . , y ς n + E∥ T α (ς − ϑ)G(ς, ϑ, y ϑ + z ϑ )dw(ϑ)∥
+T α (ς)[y 1 + η]
ς 0
R
−g(ς, y ς + z ς , σ 1 (ς, τ, y τ + z τ )dτ) ς
Z o
0 H p
+ E∥ T α (ς − ϑ)σ(ϑ)dB (ϑ)∥
ς
R Q
+ T α (ς − ϑ) f(ϑ, y ϑ + z ϑ ,
0
0
ϑ 6
R X
p p−1
σ 2 (ϑ, τ, y τ + z τ )dτ) dϑ E∥Φy(ς)∥ ≤ 6 I i . (2)
0
ς i=1
R
+ T α (ς − ϑ)G(ς, ϑ, y ϑ + z ϑ )dw(ϑ)
0
We compute the terms on the R.H.S of (2). From
ς
R H
+ T α (ς − ϑ)σ(ϑ)dB (ϑ), ς ∈ [0, ς 1 ] hypothesis (H 1 ), we have the following estima-
Q
0
tion:
.
.
.
), 0)
= p
S α (ς)g(0, φ + ˜p(y ς 1
, . . . , y ς n
, y ς 2
+T α (ς)[y 1 + η] I 1 = E∥S α (ς)g(0, φ + ˜p(y ς 1 , y ς 2 , . . . , y ς n ), 0)∥
ς
p p
R ), 0)∥
−g(ς, y ς + z ς , σ 1 (ς, τ, y τ + z τ )dτ) ≤ ∥S α (ς)∥ E∥g(0, φ + ˜p(y ς 1 , y ς 2 , . . . , y ς n
0 p−1 p
p
¯ ¯
ς ≤ 2 M M g [E∥φ∥ + L p ]
ϑ
R
+ T α (ς − ϑ) f(ϑ, y ϑ + z ϑ , p
I 2 = E∥T α (ς)[y 1 + η]∥
0
ϑ p−1 p p p
R ≤ 2 M [E∥y 1 ∥ + E∥η∥ ].
ς
σ 2 (ϑ, τ, y τ + z τ )dτ) dϑ
0
ς
R
By using hypothesis (H 2 ), we get the following
+ T α (ς − ϑ)G(ς, ϑ, y ϑ + z ϑ )dw(ϑ)
estimation:
0
ς
R
H
+ T α (ς − ϑ)σ(ϑ)dB (ϑ)
Q
0
P 1 ϑ
+ S α (ς − ς k )I (y ς k + z ς k ) Z
k
0<ς k <ς p
σ 1 (ϑ, τ, y τ + z τ )dτ)∥
I 3 = E∥g(ς, y ς + z ς ,
P
+ ),
2
k
T α (ς − ς k )I (y ς k + z ς k
0
0<ς k <ς
∀ ς ∈ (ς k , ς k+1 ], k = 1, m. ≤ M (1 + M )E∥y ς + z ς ∥
¯ p p p
g
σ 1
∗
¯ p
p
≤ M (1 + M ) b .
g
σ 1
To prove that Φ has a unique fixed point, it is By (H 1 ), (H 2 )(ii), (H 3 ) and H¨older’s inequality,
interesting to see that finding the fixed point of
Φ in H is same as finding the mild solutions of
(1) in H. Our proof will be divided into two steps. ς
Z
I 4 = E∥ T α (ς − ϑ) f(ϑ, y ϑ + z ϑ ,
Step 1: We claim that Φ(B b ) ⊂ B b . If it is not 0
true, then for each b > 0, ∃ a function y ∈ B b , Z ϑ
but Φ(B b ) ⊈ B b for ς ∈ J. σ 2 (ϑ, τ, y τ + z τ )dτ) dϑ∥ p
Case (i): For ς ∈ [0, ς 1 ],
0
b ≤ E∥(Φy)(ς)∥ p ς
Z
n ≤ E ∥T α (ς − ϑ) f(ϑ, y ϑ + z ϑ ,
≤ 6 p−1 E∥S α (ς)g(0, φ + ˜p(y ς 1 , y ς 2 , . . . , y ς n ), 0)∥ p
0
+ E∥T α (ς)[y 1 + η]∥ p ϑ
Z
p
ϑ
Z σ 2 (ϑ, τ, y τ + z τ )dτ) dϑ∥
+ E∥g(ς, y ς + z ς , σ 1 (ϑ, τ, y τ + z τ )dτ)∥ p
0
∗
p
p
p p
0 ≤ M ς [L (1 + M )] b .
ς
f
σ 2
ς ϑ
Z Z
+ E∥ T α (ς − ϑ) f(ϑ, y ϑ + z ϑ , σ 2 (ϑ, τ, By Lemma 1, assumptions (H 1 ) and (H 4 ), we es-
timate
0 0
110

