Page 115 - IJOCTA-15-1
P. 115

Exponential stability for higher-order impulsive fractional neutral stochastic integro-delay . . .

            Theorem 1. Assume that the assumptions (H 1 )
            - (H 7 ) hold, then the Cauchy problem (1) has a
            unique mild solution defined on J T , provided that
                                                              then z ς ∈ B T . If x(·) satisfies the system (1),
                   n                                   p      then we can decompose x(·) as x(ς) = y(ς)+z(ς),
                                       p
                                   p
                           p
                                                 p
                                                    p
               6 p−1  2 p−1 M (1 + M ) l + 2 p−1 M ς L f      which implies x ς = y ς + z ς for ς ∈ J iff y satisfies
                                                 ς
                           g
                                   σ 1
                                                                      ′
                                                                                 ′
                                               p
                                         p ˜
                              p
                           p
                  × (1 + M )l + 2  p−1  M C p ς 2 L p  l p    y 0 = 0, x (0) = x 1 , y (0) = y 1 .
                           σ 2           ς         G
                               ∞      p
                                X    1  q   p−1  p p
                           p p
                     p−1
                  + 2   M l        L     + 2   M l
                          ϑ          k           ς            (Φy)(ς)
                                k=1                             
                     ∞                                          0,    ς ∈ J 0
                                                                
                             p o
                                                                
                      X      q                                                            ), 0) + T α (ς)[y 1 + η]
                  ×      L 2    < 1.                             S α (ς)g(0, φ + ˜p(y ς 1  , y ς 2  , . . . , y ς n
                                                                
                           k                                    
                                                                             ς R
                                                                
                      k=1                                        −g(ς, y ς + z ς , σ 1 (ς, τ, y τ + z τ )dτ)
                                                                
                                                                
                                                                            0
                                                                
                                                                
                                                                
                                                                    ς R                 ϑ R
                                                                 + T α (ς − ϑ) f(ϑ, y ϑ + z ϑ , σ 2 (ϑ, τ, y τ + z τ )dτ) dϑ
                                                                
                                                                
                                                                
            Proof. We consider the operator Φ : B T → B T          0                    0
                                                                
                                                                    ς R
            defined by                                           + T α (ς − ϑ)G(ς, ϑ, y ϑ + z ϑ )dw(ϑ)
                                                                
                                                                
                                                                
                                                                
                                                                   0
                                                                
                                                                
                                                                    ς R
                                                                                  H
            (Φx)(ς)                                              + T α (ς − ϑ)σ(ϑ)dB (ϑ),  ς ∈ [0, ς 1 ]
                                                                
                                                                                   Q
                                                                
                                                                
                                                                   0
                                                                
                                                                .
                                                                
                                         ), ς ∈ J 0              .
                                                                 .
                  φ(ς) + ˜p(x ς 1  , x ς 2  , . . . , x ς n
               
                                                                
                                                               
                                           )                                              ), 0) + T α (ς)[y 1 + η]
                S α (ς)[φ + ˜p(x ς 1  , x ς 2  , . . . , x ς n   S α (ς)g(0, φ + ˜p(y ς 1  , y ς 2  , . . . , y ς n
                                                             =
                                                                             ς R
                                           ), 0)]              
                +g(0, φ + ˜p(x ς 1  , x ς 2  , . . . , x ς n    −g(ς, y ς + z ς , σ 1 (ς, τ, y τ + z τ )dτ)
                                                                
                                                               
                +T α (ς)[x 1 + η]                                          0
               
               
                                                                
                                                                
                                                               
                          ς                                        ς R                 ϑ R
                                                                
                         R                                      + T α (ς − ϑ) f(ϑ, y ϑ + z ϑ , σ 2 (ϑ, τ, y τ + z τ )dτ) dϑ
                −g(ς, x ς ,  σ 1 (ς, τ, x τ )dτ)               
                                                                
               
               
                                                                   0                    0
                                                               
                         0                                     
                                                                   ς R
                                                                
                    ς                   ϑ                        + T α (ς − ϑ)G(ς, ϑ, y ϑ + z ϑ )dw(ϑ)
               
                                                                
               
                   R                   R                       
                + T α (ς − ϑ) f(ϑ, x ϑ , σ 2 (ϑ, τ, x τ )dτ) dϑ    0
               
                                                                
               
                                                                
                                                                
                                                                   ς R           H
                                                                
                   0                   0                        + T α (ς − ϑ)σ(ϑ)dB (ϑ)
                    ς                                                              Q
               
                                                               
                   R                                           
                + T α (ς − ϑ)G(ς, τ, x τ )dw(τ)                   0 P           1
                                                                
               
                                                                 +
               
                                                                
                                                                         S α (ς − ς k )I (y ς k  + z ς k )
                                                                                k
                    0                                               0<ς k <ς
                                                               
                                                               
                   ς                                                P           2
                                                                
                                                               
                    R                                            +                        ),
                                                                                  k
                                     H                                  T α (ς − ς k )I (y ς k  + z ς k
                + T α (ς − ϑ)σ(ϑ)dB (ϑ),     ς ∈ [0, ς 1 ]        0<ς k <ς
               
                                      Q
                                                                
                                                               
                                                                
                    0                                           
               
                                                                            ∀ ς ∈ (ς k , ς k+1 ], k = 1, m.
                .
               
                .
               
                .
            =     S α (ς)[φ + ˜p(x ς 1  , x ς 2  , . . . , x ς n )
               
                                           ), 0)]
                +g(0, φ + ˜p(x ς 1  , x ς 2  , . . . , x ς n      0                                     0
                                                             Let B = y : y ∈ B T , y 0 = 0 , for any y ∈ B is
                                         ς                        T                                     T
               
                                         R
                +T α (ς)[x 1 + η] − g(ς, x ς , σ 1 (ς, τ, x τ )dτ)  endowed with the norm
               
               
               
                                         0
               
               
                    ς                   ϑ
               
               
               
                    R                   R
                + T α (ς − ϑ) f(ϑ, x ϑ , σ 2 (ϑ, τ, x τ )dτ) dϑ
               
               
                                                                                                   1
               
                    0                   0                                                         p         0
                                                                                                   p
                                                             ∥y∥ T = ∥y∥ 0 = ∥y 0 ∥ B +sup E∥y(ς)∥  , y ∈ B ;
                   ς                                                    B                                 T
               
                    R                                                     T
               
                + T α (ς − ϑ)G(ς, τ, x τ )dw(τ)                                     ς∈J
               
               
                    0
               
               
                   ς
                                                                    0
                                      H
                    R                                         then (B , ∥·∥ T ) is a Banach space. Set B b ⊆ {y ∈
               
                + T α (ς − ϑ)σ(ϑ)dB (ϑ)                             T
               
                                     Q                        0      P                                    0
                    0
                                                             B : ∥y∥    ≤ b} for some b > 0. Then B b ⊆ B
               
                    P               1                         T      T                                    T
                +                       )
               
                          S α (ς − ς k )I (x ς k              is a closed, bounded and convex subset. For any
                                   k
                    0<ς k <ς
               
               
                                                             y ∈ B b , we deduce from Lemma 4 that
                     P              2
               
                +        T α (ς − ς k )I (x ς k ),
               
                                   k
                    0<ς k <ς
               
               
               
                             ∀ ς ∈ (ς k , ς k+1 ], k = 1, m.
                                                              ∥y ς + z ς ∥ p
                                                                       B
                                                                          p
                                                               ≤ 2 p−1 ∥y ς ∥ + 2 p−1 ∥z ς ∥ p
            In order to show the existence of mild solution               B           B
                                                                      l (E∥y ϑ ∥ + ∥y 0 ∥) + 4
            of the Cauchy problem (1), it is enough to prove   ≤ 4 p−1 p      p            p−1 p      p B
                                                                                              l (E∥z ϑ ∥ + ∥z 0 ∥)
                                                                              B
            that Φ has a unique fixed point. For φ ∈ B, we         p−1 p      p         p          p−1    p
                                                               ≤ 4    l [b + M (E∥φ(0)∥ + L p )] + 4  ∥z 0 ∥
            define                                                            ϑ                           B
                                                                  ∗
                                                               := b .

                                        )(ς)  if  ς ∈ J 0
                   φ(ς) + ˜p(x ς 1
            z ς =                                                                             0      0
                             , x ς 2
                                 , . . . , x ς n
                                                                                              T
                                                                                                     T
                   S α (ς)[φ(ς) + ˜p(x ς 1  , x ς 2  , . . . , x ς n )(ς)] if  ς ∈ J,  Now, we define the operator Φ : B → B by
                                                           109
   110   111   112   113   114   115   116   117   118   119   120