Page 115 - IJOCTA-15-1
P. 115
Exponential stability for higher-order impulsive fractional neutral stochastic integro-delay . . .
Theorem 1. Assume that the assumptions (H 1 )
- (H 7 ) hold, then the Cauchy problem (1) has a
unique mild solution defined on J T , provided that
then z ς ∈ B T . If x(·) satisfies the system (1),
n p then we can decompose x(·) as x(ς) = y(ς)+z(ς),
p
p
p
p
p
6 p−1 2 p−1 M (1 + M ) l + 2 p−1 M ς L f which implies x ς = y ς + z ς for ς ∈ J iff y satisfies
ς
g
σ 1
′
′
p
p ˜
p
p
× (1 + M )l + 2 p−1 M C p ς 2 L p l p y 0 = 0, x (0) = x 1 , y (0) = y 1 .
σ 2 ς G
∞ p
X 1 q p−1 p p
p p
p−1
+ 2 M l L + 2 M l
ϑ k ς (Φy)(ς)
k=1
∞ 0, ς ∈ J 0
p o
X q ), 0) + T α (ς)[y 1 + η]
× L 2 < 1. S α (ς)g(0, φ + ˜p(y ς 1 , y ς 2 , . . . , y ς n
k
ς R
k=1 −g(ς, y ς + z ς , σ 1 (ς, τ, y τ + z τ )dτ)
0
ς R ϑ R
+ T α (ς − ϑ) f(ϑ, y ϑ + z ϑ , σ 2 (ϑ, τ, y τ + z τ )dτ) dϑ
Proof. We consider the operator Φ : B T → B T 0 0
ς R
defined by + T α (ς − ϑ)G(ς, ϑ, y ϑ + z ϑ )dw(ϑ)
0
ς R
H
(Φx)(ς) + T α (ς − ϑ)σ(ϑ)dB (ϑ), ς ∈ [0, ς 1 ]
Q
0
.
), ς ∈ J 0 .
.
φ(ς) + ˜p(x ς 1 , x ς 2 , . . . , x ς n
) ), 0) + T α (ς)[y 1 + η]
S α (ς)[φ + ˜p(x ς 1 , x ς 2 , . . . , x ς n S α (ς)g(0, φ + ˜p(y ς 1 , y ς 2 , . . . , y ς n
=
ς R
), 0)]
+g(0, φ + ˜p(x ς 1 , x ς 2 , . . . , x ς n −g(ς, y ς + z ς , σ 1 (ς, τ, y τ + z τ )dτ)
+T α (ς)[x 1 + η] 0
ς ς R ϑ R
R + T α (ς − ϑ) f(ϑ, y ϑ + z ϑ , σ 2 (ϑ, τ, y τ + z τ )dτ) dϑ
−g(ς, x ς , σ 1 (ς, τ, x τ )dτ)
0 0
0
ς R
ς ϑ + T α (ς − ϑ)G(ς, ϑ, y ϑ + z ϑ )dw(ϑ)
R R
+ T α (ς − ϑ) f(ϑ, x ϑ , σ 2 (ϑ, τ, x τ )dτ) dϑ 0
ς R H
0 0 + T α (ς − ϑ)σ(ϑ)dB (ϑ)
ς Q
R
+ T α (ς − ϑ)G(ς, τ, x τ )dw(τ) 0 P 1
+
S α (ς − ς k )I (y ς k + z ς k )
k
0 0<ς k <ς
ς P 2
R + ),
k
H T α (ς − ς k )I (y ς k + z ς k
+ T α (ς − ϑ)σ(ϑ)dB (ϑ), ς ∈ [0, ς 1 ] 0<ς k <ς
Q
0
∀ ς ∈ (ς k , ς k+1 ], k = 1, m.
.
.
.
= S α (ς)[φ + ˜p(x ς 1 , x ς 2 , . . . , x ς n )
), 0)]
+g(0, φ + ˜p(x ς 1 , x ς 2 , . . . , x ς n 0 0
Let B = y : y ∈ B T , y 0 = 0 , for any y ∈ B is
ς T T
R
+T α (ς)[x 1 + η] − g(ς, x ς , σ 1 (ς, τ, x τ )dτ) endowed with the norm
0
ς ϑ
R R
+ T α (ς − ϑ) f(ϑ, x ϑ , σ 2 (ϑ, τ, x τ )dτ) dϑ
1
0 0 p 0
p
∥y∥ T = ∥y∥ 0 = ∥y 0 ∥ B +sup E∥y(ς)∥ , y ∈ B ;
ς B T
R T
+ T α (ς − ϑ)G(ς, τ, x τ )dw(τ) ς∈J
0
ς
0
H
R then (B , ∥·∥ T ) is a Banach space. Set B b ⊆ {y ∈
+ T α (ς − ϑ)σ(ϑ)dB (ϑ) T
Q 0 P 0
0
B : ∥y∥ ≤ b} for some b > 0. Then B b ⊆ B
P 1 T T T
+ )
S α (ς − ς k )I (x ς k is a closed, bounded and convex subset. For any
k
0<ς k <ς
y ∈ B b , we deduce from Lemma 4 that
P 2
+ T α (ς − ς k )I (x ς k ),
k
0<ς k <ς
∀ ς ∈ (ς k , ς k+1 ], k = 1, m.
∥y ς + z ς ∥ p
B
p
≤ 2 p−1 ∥y ς ∥ + 2 p−1 ∥z ς ∥ p
In order to show the existence of mild solution B B
l (E∥y ϑ ∥ + ∥y 0 ∥) + 4
of the Cauchy problem (1), it is enough to prove ≤ 4 p−1 p p p−1 p p B
l (E∥z ϑ ∥ + ∥z 0 ∥)
B
that Φ has a unique fixed point. For φ ∈ B, we p−1 p p p p−1 p
≤ 4 l [b + M (E∥φ(0)∥ + L p )] + 4 ∥z 0 ∥
define ϑ B
∗
:= b .
)(ς) if ς ∈ J 0
φ(ς) + ˜p(x ς 1
z ς = 0 0
, x ς 2
, . . . , x ς n
T
T
S α (ς)[φ(ς) + ˜p(x ς 1 , x ς 2 , . . . , x ς n )(ς)] if ς ∈ J, Now, we define the operator Φ : B → B by
109

